已知:如圖,AB是⊙O的直徑,BC是弦,OD⊥BC于點(diǎn)F,交⊙O于點(diǎn)D,連接AD、CD,∠E=∠ADC.
(1)求證:BE是⊙O的切線;
(2)若BC=6,tanA=,求⊙O的半徑.

【答案】分析:(1)要證明BE是⊙O的切線,即可轉(zhuǎn)化為證明∠ABE=90°即可;
(2)連接BD,有垂徑定理和圓周角定理可求出DF的長(zhǎng),設(shè)OB=x,則OF=x-DF,再利用勾股定理即可求出x的值,即⊙O的半徑.
解答:(1)證明:∵OD⊥BC
∴∠E+∠FBE=90°,
∵∠ADC=∠ABC,∠ADC=∠E,
∴∠ABC=∠E,
∴∠ABC+∠FBE=90°,
∴BE與⊙O相切;

(2)解:連接BD,
∵半徑OD⊥BC,
∴弧BD=弧CD,
∴∠BCD=∠CBD,
∵∠A=∠BCD,
∴∠CBD=∠A,
∴tanA=tan∠CBD=,
∵FC=BF=3,
∴DF=2,
在Rt△CFD中:設(shè)半徑OB=x,OF=x-2,
∴x2=32+(x-2)2,
解得:x=,
∴⊙O的半徑為
點(diǎn)評(píng):本題考查了切線的判定定理、圓周角定理、垂徑定理、勾股定理以及三角函數(shù)的綜合應(yīng)用,題目綜合性很強(qiáng),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過(guò)點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長(zhǎng)線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過(guò)點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案