若高為2的等邊三角形的邊長(zhǎng)是一個(gè)方程3x2mx-4=0的根,那么代數(shù)式(5m2+18m+8)2004的值為________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•德城區(qū)二模)閱讀材料:如圖,△ABC中,AB=AC,P為底邊BC上任意一點(diǎn),點(diǎn)P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h,∴r1+r2=h
(1)理解與應(yīng)用
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點(diǎn)”放寬為“在    三角形內(nèi)任一點(diǎn)”,即:已知邊長(zhǎng)為2的等邊△ABC內(nèi)任意一點(diǎn)P到各邊的距離分別為r1,r2,r3,試證明:r1+r2+r3=
3

(2)類比與推理
邊長(zhǎng)為2的正方形內(nèi)任意一點(diǎn)到各邊的距離的和等于
4
4

(3)拓展與延伸
若邊長(zhǎng)為2的正n邊形A1A2…An內(nèi)部任意一點(diǎn)P到各邊的距離為r1,r2,…rn,請(qǐng)問r1+r2+…rn是否為定值(用含n的式子表示),如果是,請(qǐng)合理猜測(cè)出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為4cm的等邊三角形,AD為BC邊上的高,點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s,點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,若點(diǎn)P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為x(s).
(l)求x為何值時(shí),PQ⊥AC;x為何值時(shí),PQ⊥AB?
(2)當(dāng)O<x<2時(shí),AD是否能平分△PQD的面積?若能,說出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC是邊長(zhǎng)為4cm的等邊三角形,AD為BC邊上的高,點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s,點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,若點(diǎn)P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為x(s).
(l)求x為何值時(shí),PQ⊥AC;x為何值時(shí),PQ⊥AB?
(2)當(dāng)O<x<2時(shí),AD是否能平分△PQD的面積?若能,說出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年安徽省中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

如圖,△ABC是邊長(zhǎng)為4cm的等邊三角形,AD為BC邊上的高,點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s,點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,若點(diǎn)P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為x(s).
(l)求x為何值時(shí),PQ⊥AC;x為何值時(shí),PQ⊥AB?
(2)當(dāng)O<x<2時(shí),AD是否能平分△PQD的面積?若能,說出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案