在四邊形ABCD中,對角線AC、BD相交于點O,試判斷2AC+2BD與AB+BC+CD+DA之間的數(shù)量關(guān)系.
考點:三角形三邊關(guān)系
專題:
分析:先根據(jù)三角形兩邊之和大于第三邊得出OA+OB>AB,OB+OC>BC,OC+OD>CD,OA+OD>AD,再利用不等式的性質(zhì)將這四個不等式相加得出2(OA+OB+OC+OD)>AB+BC+CD+AD,由OA+OC=AC,OB+OD=BD,即可證明2AC+2BD>AB+BC+CD+AD.
解答:解:2AC+2BD>AB+BC+CD+DA.理由如下:
∵OA+OB>AB,
OB+OC>BC,
OC+OD>CD,
OA+OD>AD,
∴2(OA+OB+OC+OD)>AB+BC+CD+AD,
∵OA+OC=AC,OB+OD=BD,
∴2AC+2BD>AB+BC+CD+AD.
點評:本題考查了三角形三邊關(guān)系定理:三角形兩邊之和大于第三邊.同時考查了不等式的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在紙面上有一數(shù)軸(如圖),折疊紙面.
(1)若表示數(shù)1的點與表示數(shù)-1的點重合,則表示-2的點與表示數(shù)
 
的點重合;
(2)若表示數(shù)-1的點與表示數(shù)3的點重合,回答以下兩個問題:
①表示數(shù)5的點與表示數(shù)
 
的點重合;
②若數(shù)軸上A、B兩點之間的距離為m(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,直接寫出A、B兩點表示的數(shù)(用含m的式子表示)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A=64°,圓O交AB邊于G,H,交BC邊于M,N,交AC邊于K,L,且GH=MN=KL,連接OB,OC,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把函數(shù)y=-2x2+4x+3用配方法配成頂點式,并寫出它的對稱軸和頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某市民營經(jīng)濟(jì)持續(xù)發(fā)展,2013年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬.為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2013年月平均收入隨機(jī)抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分為四組,進(jìn)行整理,分別用A,B,C,D表示,得到下列兩幅不完整的統(tǒng)計圖.

由圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的員工有
 
人,在扇形統(tǒng)計圖中x的值為
 
,表示“月平均收入在2000元以內(nèi)”的部分所對應(yīng)扇形的圓心角的度數(shù)是
 
;
(2)將不完整的條形圖補(bǔ)充完整,并估計該市2013年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000元”的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡二次根式:a
-
1
a
,結(jié)果正確的是( 。
A、
a
B、
-a
C、-
a
D、-
-a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下圖是某班學(xué)生上學(xué)的三種方式(乘車、步行、騎車)的人數(shù)分布直方圖和扇形圖.
(1)求該班有多少名學(xué)生;
(2)補(bǔ)齊人數(shù)分布直方圖的空缺部分;
(3)若全年級有360人,估計該年級步行人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若a,b互為相反數(shù),x,y互為倒數(shù),xy≠0,則(a+b)
x
y
+xy=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程ax2+bx+c=0的一個根是1,且a、b滿足等式b=a+
|a|-3
+
3-|a|
a+3
,求a、b、c的值?

查看答案和解析>>

同步練習(xí)冊答案