解:(1)∵△OAB和△BCD都為等邊三角形,
∴OB=AB,BC=BD,
∠OBA=∠DBC=60°,即∠OBA+∠ABC=∠DBC+∠ABC,
∴∠OBC=∠ABD,
∴△OBC≌△ABD,
∴AD=OC=1+x;
(2)隨著C點的變化,直線AE的位置不變.理由如下:
由△OBC≌△ABD,得到∠BAD=∠BOC=60°,
又∵∠BAO=60°,∴∠DAC=60°,
∴∠OAE=60°,又OA=1,
在直角三角形AOE中,tan60°=
,
則OE=
,點E坐標(biāo)為(0,-
),A(1,0),
設(shè)直線AE解析式為y=kx+b,把E和A的坐標(biāo)代入得:
,
解得:
,
所以直線AE的解析式為y=
x-
;
(3)根據(jù)題意畫出圖形,如圖所示:
∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,
則EF與EA所在的直線重合,∴點F為DE與BC的交點,
又F為BC中點,∴A為OC中點,又AO=1,則OC=2,
∴當(dāng)C的坐標(biāo)為(2,0)時,EF∥OB;
這時直線BO與⊙F相切,理由如下:
∵△BCD為等邊三角形,F(xiàn)為BC中點,
∴DF⊥BC,又EF∥OB,
∴FB⊥OB,即∠FBO=90°,
故直線BO與⊙F相切;
(4)根據(jù)題意畫出圖形,如圖所示:
由點B,點C及點G在圓F的圓周上得:FB=FC=FG,即FG=
BC,
∴△CBG為直角三角形,又△BCD為等邊三角形,
∴BG為∠CBD的平分線,即∠CBG=30°,
過點B作x軸的垂直,交x軸于點M,由△OAB為等邊三角形,
∴M為OA中點,即MA=
,BM=
,MC=AC+AM=x+
,
在直角三角形BCM中,根據(jù)勾股定理得:
BC=
=
,
∵DF垂直平分BC,∴B和C關(guān)于DF對稱,∴HC=HB,
則HC+HG=BG,此時BG最小,
在直角三角形BCG中,BG=BCcos30°=
.
分析:(1)由△OAB和△BCD都為等邊三角形,等邊三角形的邊長相等,且每一個內(nèi)角都為60°,得到∠OBA=∠DBC,等號兩邊都加上∠ABC,得到∠OBC=∠ABD,根據(jù)“SAS”得到△OBC≌△ABD,即可得到對應(yīng)邊AD與OC相等,由OC表示出AD即可;
(2)隨著C點的變化,直線AE的位置不變.理由為:由(1)得到的兩三角形全等,得到∠BAD=∠BOC=60°,又等邊三角形BCD,得到∠BAO=60°,根據(jù)平角定義及對頂角相等得到∠OAE=60°,在直角三角形OAE中,由OA的長,根據(jù)tan60°的定義求出OE的長,確定出點E的坐標(biāo),設(shè)出直線AE的方程,把點A和E的坐標(biāo)代入即可確定出解析式;
(3)由EA與OB平行,且EF也與OB平行,根據(jù)過直線外一點作已知直線的平行線有且只有一條,得到EF與EA重合,所以F為BC與AE的交點,又F為BC的中點,得到A為OC中點,由A的坐標(biāo)即可求出C的坐標(biāo);相切,理由是由F為等邊三角形BC邊的中點,根據(jù)“三線合一”得到DF與BC垂直,由EF與OB平行得到BF與OB垂直,得證;
(4)根據(jù)等邊三角形的“三線合一”得到DF垂直平分BC,所以C與D關(guān)于DF對稱,所以GB為HC+HG的最小值,GB的求法是:由B,C及G三點在圓F圓周上,得到FB,F(xiàn)C及FG相等,利用一邊的中線等于這邊的一半得到三角形BCG為直角三角形,根據(jù)“三線合一”得到∠CBG為30°,利用cos30°和BC的長即可求出BG,而BC的長需要過B作BM垂直于x軸,根據(jù)等邊三角形的性質(zhì)求出BM及AM,表示出CM,在直角三角形BMC中,根據(jù)勾股定理表示出BC的長即可.
點評:此題綜合考查了等邊三角形的性質(zhì),直角三角形的性質(zhì),三角形全等的判定與性質(zhì)以及對稱的有關(guān)知識.此題的難點是(3)和(4)小問,(3)重點要確定出點F的特殊位置即直線ED與BC的交點,把EF平行OB作為已知條件,推導(dǎo)點C的位置;(4)解題的關(guān)鍵是利用等邊三角形“三線合一”的性質(zhì)找出C關(guān)于FD的對稱點為B,進(jìn)而得到BG為所求的最小值.