8、在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)A(1,1),在x軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P的個(gè)數(shù)共有( 。
分析:本題應(yīng)該分情況討論.以O(shè)A為腰或底分別討論.當(dāng)A是頂角頂點(diǎn)時(shí),P是以A為圓心,以O(shè)A為半徑的圓與x軸的交點(diǎn),共有1個(gè),若OA是底邊時(shí),P是OA的中垂線與x軸的交點(diǎn),有1個(gè),共有4個(gè)
解答:解:(1)若AO作為腰時(shí),有兩種情況,
當(dāng)A是頂角頂點(diǎn)時(shí),P是以A為圓心,以O(shè)A為半徑的圓與x軸的交點(diǎn),共有1個(gè),
當(dāng)O是頂角頂點(diǎn)時(shí),P是以O(shè)為圓心,以O(shè)A為半徑的圓與x軸的交點(diǎn),有2個(gè);
(2)若OA是底邊時(shí),P是OA的中垂線與x軸的交點(diǎn),有1個(gè).
以上4個(gè)交點(diǎn)沒(méi)有重合的.故符合條件的點(diǎn)有4個(gè).
故選C.
點(diǎn)評(píng):本題考查了坐標(biāo)與圖形的性質(zhì)及等腰三角形的判定;對(duì)于底和腰不等的等腰三角形,若條件中沒(méi)有明確哪邊是底哪邊是腰時(shí),應(yīng)在符合三角形三邊關(guān)系的前提下分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△精英家教網(wǎng)OAB,C為x軸正半軸上的一個(gè)動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點(diǎn).
(1)如圖,當(dāng)C點(diǎn)在x軸上運(yùn)動(dòng)時(shí),若設(shè)AC=x,請(qǐng)用x表示線段AD的長(zhǎng).
(2)隨著C點(diǎn)的變化,直線AE的位置變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點(diǎn)F,當(dāng)C點(diǎn)運(yùn)動(dòng)到何處時(shí)直線EF∥直線BO?這時(shí)⊙F和直線BO相切的位置關(guān)系如何?請(qǐng)給予說(shuō)明.
(4)G為CD與⊙F的交點(diǎn),H為直線DF上的一個(gè)動(dòng)點(diǎn),連接HG、HC,求HG+HC的最小值,并將此最小值用x表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過(guò)點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF.連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF,設(shè)OD=t.
(1)求tan∠FOB的值;
(2)用含t的代數(shù)式表示△OAB的面積S;
(3)是否存在點(diǎn)B,使以B,E,F(xiàn)為頂點(diǎn)的三角形與△OFE相似?若存在,請(qǐng)求出所有滿足要求的B點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,矩形AOBC在直角坐標(biāo)系中,O為原點(diǎn),A在x軸上,B在y軸上,直線AB的函數(shù)關(guān)系式為y=-
43
x+8
,M是OB上的一點(diǎn),若將梯形AMBC沿AM折疊,點(diǎn)B恰好落在x軸上的精英家教網(wǎng)點(diǎn)B′處,C的對(duì)應(yīng)點(diǎn)為C′.
(1)求出B′點(diǎn)和M點(diǎn)的坐標(biāo);
(2)求直線A C′的函數(shù)關(guān)系式;
(3)設(shè)一動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位速度沿射線AB方向運(yùn)動(dòng),過(guò)P作PQ⊥AB,交射線AM于Q;
①求運(yùn)動(dòng)t秒時(shí),Q點(diǎn)的坐標(biāo);(用含t的代數(shù)式表示)
②以Q為圓心,以PQ的長(zhǎng)為半徑作圓,當(dāng)t為何值時(shí),⊙Q與y軸相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO是正三角形,若點(diǎn)B的坐標(biāo)是(-2,0),則點(diǎn)A的坐標(biāo)是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

同步練習(xí)冊(cè)答案