【題目】如圖,△ABC中,ABAC,DBC中點(diǎn),FAC中點(diǎn),AN是△ABC的外角∠MAC的角平分線,延長(zhǎng)DFAN于點(diǎn)E,連接CE

1)求證:四邊形ADCE是矩形;

2)填空:①若BCAB4,則四邊形ABDE的面積為  

②當(dāng)△ABC滿足  時(shí),四邊形ADCE是正方形.

【答案】(1)見(jiàn)解析;(2)①4,②∠BAC=90°

【解析】

(1)利用角平分線、等邊對(duì)等角和外角可先證出∠MAE=∠B,所以ANBC,利用F是AC的中點(diǎn)可證△AFE≌△CFD,即可得到EF=FD,利用對(duì)角線互相平分的四邊形是平行四邊形所以四邊形ADCE為平行四邊形,再利用ABAC,點(diǎn)DBC中點(diǎn),可以得到ADBC

有一個(gè)角是直角的平行四邊形是矩形可得:四邊形ADCE為矩形;

2)由DF分別是BC、AC的中點(diǎn),利用中位線的性質(zhì)可得:DFAB易證四邊形ABDE是平行四邊形,利用BCAB4ABAC,可得△ABC是等邊三角形,最后利用銳角三角函數(shù)求出高AD即可.

3)可根據(jù)四邊形ADCE是矩形,若再有一組鄰邊相等即為正方形不防使AD=DC,此時(shí)不難發(fā)現(xiàn)△ADC為等腰直角三角形,故∠ACB=45°,再根據(jù)△ABC為等腰三角形,即可得到∠BAC=90°.

證明:∵AN是△ABC外角∠CAM的平分線,

∴∠MAEMAC,

∵∠MAC=∠B+ACB,

ABAC,

∴∠B=∠ACB,

∴∠MAE=∠B,

ANBC

∴∠EAF=∠DCF

在△AFE和△CFD中

∴△AFE≌△CFD

∴EF=FD

∴四邊形ADCE為平行四邊形

ABAC,點(diǎn)DBC中點(diǎn),

ADBC,

∴∠ADC90°,

∴四邊形ADCE為矩形;

2)①解:∵ABACDBC中點(diǎn),FAC中點(diǎn),

DFAB,

由(1)知AEBD,

∴四邊形ABDE是平行四邊形,

BCAB4,ABAC,

∴△ABC是等邊三角形,

∴∠ABD60°,

DBC的中點(diǎn),

∴∠ADC90°BD2,

,

∴四邊形ABDE的面積為BD×AD4

故答案為:4;

②解:答案不唯一,如當(dāng)∠BAC90°時(shí),四邊形ADCE是正方形.

∵∠BAC90°,ABAC,

∴△ABC為等腰直角三角形,

DBC的中點(diǎn),

ADDC,

∵四邊形ADCE為矩形,

∴四邊形ADCE為正方形.

故答案為:∠BAC90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC10,BD9,則△ADE的周長(zhǎng)為( 。

A. 19B. 20C. 27D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(一)如圖(1),已知圓,點(diǎn)在圓上,且為等邊三角形,點(diǎn)為直線與圓的一個(gè)交點(diǎn).連接,,證明:

(方法遷移)

(二)如圖(2),用直尺和圓規(guī)在矩形內(nèi)作出所有的點(diǎn),使得(不寫作法,保留作圖痕跡).

(深入探究)

(三)已知矩形,,邊上的點(diǎn),若滿足的點(diǎn)P恰有兩個(gè),求的取值范圍.

(四)已知矩形,,為矩形內(nèi)一點(diǎn),且,若點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),求的最小值,并求此時(shí)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有座拋物線形拱橋(如圖),正常水位時(shí)橋下河面寬,河面距拱頂,為了保證過(guò)往船只順利航行,橋下水面的寬度不得小于.

1)求出如圖所示坐標(biāo)系中的拋物線的解析式;

2)求水面在正常水位基礎(chǔ)上上漲多少米時(shí),就會(huì)影響過(guò)往船只航行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝新中國(guó)成立70周年,河南省實(shí)驗(yàn)中學(xué)開(kāi)展了以我和我親愛(ài)的祖國(guó)為主題的快閃活動(dòng),九年級(jí)準(zhǔn)備從兩名男生和兩名女生中選出兩名同學(xué)領(lǐng)唱,如果每一位同學(xué)被選中的機(jī)會(huì)均等,則選出的恰為一位男生一位女生的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).

1)當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),PQ兩點(diǎn)的距離為   cm;

2)請(qǐng)你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;

3)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長(zhǎng)為單位長(zhǎng)度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線過(guò)點(diǎn)D,問(wèn)k的值是否會(huì)變化?若會(huì)變化,說(shuō)明理由;若不會(huì)變化,請(qǐng)求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,二次函數(shù)yax2+2ax3aa≠0)圖象的頂點(diǎn)為Cx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C、B關(guān)于過(guò)點(diǎn)A的直線lykx+對(duì)稱.

1)求A、B兩點(diǎn)坐標(biāo)及直線l的解析式;

2)求二次函數(shù)解析式;

3)如圖2,過(guò)點(diǎn)B作直線BDAC交直線lD點(diǎn),MN分別為直線AC和直線l上的兩個(gè)動(dòng)點(diǎn),連接CN,MM、MD,求CN+NM+MD的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示ABC中,∠C90°,∠A,∠B的平分線交于D點(diǎn),DEBC于點(diǎn)E,DFAC于點(diǎn)F

1)求證:四邊形CEDF為正方形;

2)若AC6,BC8,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的半徑為13,連接,交于點(diǎn),若將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),則共相切_______次.

查看答案和解析>>

同步練習(xí)冊(cè)答案