如圖,在⊙O中,弦BE與CD相交于點F,CB,ED的延長線相交于點A,若∠A=30°,∠CFE=70°,則∠BCD=


  1. A.
    20°
  2. B.
    25°
  3. C.
    30°
  4. D.
    50°
A
分析:結合圖形可知,∠BCD=∠BED,根據三角形外角的性質有∠CFE=∠BED+∠CDE=70°,∠CDE=∠A+∠BCD,即可得出∠CFE=∠BED+∠A+∠BCD=∠A+2∠BCD=70°,且∠A=30°,即可得出∠BCD=20°.
解答:在△CDE中,∠CFE=∠BED+∠CDE,
在△ACD中,∠CDE=∠A+∠BCD,
∴∠CFE=∠BED+∠A+∠BCD,
又∵∠BCD=∠BED,∠A=30°,∠CFE=70°,
∴∠BCD=20°.
故選A.
點評:本題綜合考查了三角形外角的性質和圓周角定理,題目簡單,有利于培養(yǎng)學生對此類題目的綜合把握能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網標系.
(1)求圓心M的坐標;
(2)求經過A,B,C三點的拋物線的解析式;
(3)設點P是⊙M上的一個動點,當△PAB為Rt△PAB時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習冊答案