已知:如圖,拋物線y=-
3
4
x2+3
與x軸交于點(diǎn)A,點(diǎn)B,與直y=-
3
4
x+b
相交于點(diǎn)B,點(diǎn)C,直線y=-
3
4
x+b
與y軸交于點(diǎn)E.
(1)求△ABC的面積;
(2)若點(diǎn)M在線段AB上以每秒1個(gè)單位長(zhǎng)度的速度從A向B運(yùn)動(dòng)(不與A,B重合),同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長(zhǎng)度的速度從B向C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)寫出△MNB的面積S與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動(dòng)多少時(shí)間時(shí),△MNB的面積最大,最大面積是多少?
分析:(1)令y=0代入y=-
3
4
x2+3求出點(diǎn)A,B的坐標(biāo).把B點(diǎn)坐標(biāo)代入y=-
3
4
x+b求出BC的解析式,聯(lián)立方程組求出B.C的坐標(biāo).求出AB,CD的長(zhǎng)后可求出三角形ABC的面積.
(2)過(guò)N點(diǎn)作NP⊥MB,證明△BNP∽△BEO,由已知令y=0求出點(diǎn)E的坐標(biāo),利用線段比求出NP,BE的長(zhǎng).求出S與t的函數(shù)關(guān)系式后利用二次函數(shù)的性質(zhì)求出S的最大值.
解答:解:(1)在y=-
3
4
x2+3中,令y=0,
∴-
3
4
x2+3=0,
∴x1=2,x2=-2,
∴A(-2,0),B(2,0),
又點(diǎn)B在y=-
3
4
x+b上
∴0=-
3
2
+b,b=
3
2
,
∴BC的解析式為y=-
3
4
x+
3
2

y=-
3
4
x2+3
y=-
3
4
x+
3
2
,
x1=-1
y1=
9
4
,
x2=2
y2=0

∴C(-1,
9
4
),B(2,0),
∴AB=4,CD=
9
4
,
∴S△ABC=
1
2
×4×
9
4
=
9
2


(2)
過(guò)點(diǎn)N作NP⊥MB于點(diǎn)P
∵EO⊥MB,
∴NP∥EO,
∴△BNP∽△BEO,
BN
BE
=
NP
EO
,
由直線y=-
3
4
x+
3
2
可得:E(0,
3
2

∴在△BEO中,BO=2,EO=
3
2
,則BE=
5
2

2t
5
2
=
NP
3
2
,
∴NP=
6
5
t,
∴S=
1
2
×
6
5
t×(4-t)
=-
3
5
t2+
12
5
t
=-
3
5
(t-2)2+
12
5
,(0<t<4)
∵此拋物線開(kāi)口向下,
∴當(dāng)t=2時(shí),S最大=
12
5
,
∴當(dāng)點(diǎn)M運(yùn)動(dòng)2秒時(shí),△MNB的面積達(dá)到最大,最大為
12
5
點(diǎn)評(píng):此題主要考查了二次函數(shù)圖象與應(yīng)用相結(jié)合的綜合題以及三角形面積的計(jì)算方法和相似三角形的判定與性質(zhì),利用兩函數(shù)聯(lián)立得出B,C坐標(biāo)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1和3,精英家教網(wǎng)與y軸交點(diǎn)C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點(diǎn)M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過(guò)M、A兩點(diǎn)的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點(diǎn)P,使過(guò)P、M兩點(diǎn)的直線與△ABC的兩邊AB、BC的交點(diǎn)E、F和點(diǎn)B所組成的△BEF和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1-
3
,0)和點(diǎn)B,將拋物線沿x軸向上翻折,頂點(diǎn)P落在點(diǎn)P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點(diǎn),與它關(guān)于原點(diǎn)對(duì)稱的點(diǎn)也在該拋物線上?若存在,求滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(3)學(xué)校舉行班徽設(shè)計(jì)比賽,九年級(jí)(5)班的小明在解答此題時(shí)頓生靈感:過(guò)點(diǎn)P′作x軸的平行線交拋物線于C、D兩點(diǎn),將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計(jì)成一個(gè)“W”型的班徽,“5”的拼音開(kāi)頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過(guò)計(jì)算驚奇的發(fā)現(xiàn)這個(gè)“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請(qǐng)你計(jì)算這個(gè)“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)若點(diǎn)M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點(diǎn)M的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA≠OB,OA=OC,設(shè)拋物線的頂點(diǎn)為點(diǎn)P,直線PC與x軸的交點(diǎn)D恰好與點(diǎn)A關(guān)于y軸對(duì)稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點(diǎn)Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)連接PA、AC.問(wèn):在直線PC上,是否存在這樣點(diǎn)E(不與點(diǎn)C重合),使得以P、A、E為頂點(diǎn)的三角形與△PAC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案