【題目】某學(xué)校為九年級數(shù)學(xué)競賽獲獎選手購買以下三種獎品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費346元,若使購買的獎品總數(shù)最多,則這三種獎品中,大筆記本購買的數(shù)量是____本.
【答案】8
【解析】
根據(jù)題意結(jié)合獎品的價格得出5x+7y+10z=346,y=2z,再利用共花費346元,分別得出x,y,z的取值范圍,進而得出z的取值范圍,分別分析得出所有的可能.
解:設(shè)購買小筆記本x本,大筆記本y本,鋼筆z支,
則有5x+7y+10z=346,y=2z,
易知0<x≤69,0<y≤49,0<z≤34,
∴5x+14z+10z=346,5x+24z=346,即,
∵x,y,z均為正整數(shù),346-24z≥0,即0<z≤14,
∴z只能取14,9和4。
當(dāng)z為14時,=2,y=2z=28,x+y+z=44.
當(dāng)z為9時,=26,y=2z=18,x+y+z=53.
當(dāng)z為4時,x==50,y=2z=8,x+y+z=62.
綜上所述,若使購買的獎品總數(shù)最多,應(yīng)購買小筆記本50本,大筆記本8本,鋼筆4支.
故答案為:8
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=,BC=2.現(xiàn)分別任作△ABC的內(nèi)接矩形P1Q1M1N1,P2Q2M2N2,P3Q3M3N3,設(shè)這三個內(nèi)接矩形的周長分別為c1、c2,c3,則c1+c2+c3的值是( 。
A. 6B. C. 12D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,AD是弦,∠ADE = 60°,∠C = 30°.
⑴判斷直線CD是否是⊙O的切線,并說明理由;
⑵若CD = ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正確的結(jié)論有( ).
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有2個實數(shù)根,且其中一個實數(shù)根是另一個實數(shù)根的3倍,則稱該方程為“立根方程”.
(1)方程x2﹣4x+3=0 立根方程,方程x2﹣2x﹣3=0 立根方程;(請?zhí)?/span>“是”或“不是”)
(2)請證明:當(dāng)點(m,n)在反比例函數(shù)y上時,關(guān)于x的一元二次方程mx2+4x+n=0是立根方程;
(3)若方程ax2+bx+c=0是立根方程,且兩點P(3,2)、Q(6,2)均在二次函數(shù)y=ax2+bx+c上,求方程ax2+bx+c=0的兩個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,如果已知2個元素(其中至少有一個是邊),那么就可以求出其余的3個未知元素.對于任意三角形,我們需要知道幾個元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察下列4幅圖,根據(jù)圖中已知元素,可以求出其余未知元素的三角形是 .
(2)如圖,在△ABC中,已知∠B=40°,BC=18,AB=15,請求出AC的長度(答案保留根號).(參考數(shù)據(jù):sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD 中,點E在AD上,EC∥AB,EB∥DC,若△ABE面積為5,△ECD的面積為1,則△BCE的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件,求:
(1)若商場每件襯衫降價10元,則商場每天可盈利多少元?
(2)若商場平均每天要盈利1250元,每件襯衫應(yīng)降價多少元?
(3)要使商場平均每天盈利1500元,可能嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com