【題目】在正方形ABCD中,AC為對角線,點EAC上一點,連接EB,ED.

(1)求證:△BEC≌△DEC;

(2)延長BEAD于點F,當∠BED120°時,求∠EFD的度數(shù).

【答案】(1)見解析;(2)105°

【解析】試題分析:(1)根據正方形的性質可得BC=CD,ECB=ECD=45°,利用全等三角形的判定方法判定BEC≌△DEC(2)根據全等三角形的性質可得BEC=DEC= ,因為BED=120°,所以BEC=60°=AEF,

所以EFD=60°+45°=105°.

試題解析: (1)證明:∵四邊形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°,

∴在△BEC與△DEC,

,

∴△BEC≌△DEC(SAS),

(2)∵△BEC≌△DEC,

∴∠BEC=DEC= ,

∵∠BED=120°,

∴∠BEC=60°=∠AEF,

∴∠EFD=60°+45°=105°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于任意一點P(x,y),我們做以下規(guī)定:d(P)=|x|+|y|,稱d(P)為點P的坐標距離.

(1)已知:點P(3,﹣4),求點P的坐標距離d(P)的值.

(2)如圖,四邊形OABC為正方形,且點A、B在第一象限,點C在第四象限.

①求證:d(A)=d(C).

②若OC=2,且滿足d(A)+d(C)=d(B)+2,求點B坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點C逆時針旋轉75°,點E的對應點N恰好落在OA上,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出 平面內不在同一條直線上的三點確定一個面,那么平面內的四點(任意三點均不在同一直線上),能否在同一個面上呢?
初步思考
設不在同一條直線上的三點A、B、C確定的圓為⊙O.
(1)當C、D在線段AB的同側時.
如圖①,若點D在⊙O上,此時有∠ACB=∠ADB,理由是
如圖②,若點D在⊙O內,此時有∠ACB∠ADB;
如圖③,若點D在⊙O外,此時有∠ACB∠ADB(填“=”、“>”、“<”)
由上面的探究,請直接寫出A、B、C、D四點在同一個圓上的條件:
類比學習
(2)仿照上面的探究思路,請?zhí)骄浚寒擟、D在線段AB的異側時的情形.
由上面的探究,請用文字語言直接寫出A、B、C、D四點在同一個圓上的條件:
拓展延伸
(3)如何過圓上一點,僅用沒有刻度的直尺,作出已知直徑的垂線? 已知:如圖,AB是⊙O的直徑,點C在⊙O上,求作:CN⊥AB
作法:①連接CA、CB
②在CB上任取異于B、C的一點D,連接DA,DB;
③DA與CB相交于E點,延長AC、BD,交于F點;
④連接F、E并延長,交直徑AB與M;
⑤連接D、M并延長,交⊙O于N,連接CN,則CN⊥AB.
請安上述作法在圖④中作圖,并說明CN⊥AB的理由.(提示:可以利用(2)中的結論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明從路燈下A處向前走了5米,發(fā)現(xiàn)自己在地面上的影子長DE是2米,如果小明的身高為1.6米,那么路燈離地面的高度AB是(
A.4米
B.5.6米
C.2.2米
D.12.5米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一個直角三角形紙片,∠A=30°,將其折疊,使點C落在斜邊上的點C處,折痕為BD,如圖②,再將②沿DE折疊,使點A落在DC′的延長線上的點A′處,如圖③,若折痕DE的長是cm,則BC的長是( 。

A. 3cm B. 4cm C. 5cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=8 ,AD=10,點E是CD中點,將這張紙片依次折疊兩次;第一次折疊紙片使點A與點E重合,如圖2,折痕為MN,連接ME、NE;第二次折疊紙片使點N與點E重合,如圖3,點B落到B′處,折痕為HG,連接HE,則tan∠EHG=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°,若旗桿底部G點為BC的中點,求矮建筑物的高CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某市初中學生上學的交通方式,從中隨機調查了a名學生的上學交通方式,統(tǒng)計結果如圖.
(1)求a的值;
(2)補全條形統(tǒng)計圖并求出乘坐公共汽車上學占上學交通方式百分比的扇形圓心角的度數(shù);
(3)該市共有初中學生15000名,請估計其中坐校車上學的人數(shù).

查看答案和解析>>

同步練習冊答案