如圖:在正方形ABCD中,點(diǎn)P、Q是CD邊上的兩點(diǎn),且DP=CQ,過(guò)D作DG⊥AP于H,交AC、BC分別于E,G,AP、EQ的延長(zhǎng)線(xiàn)相交于R.
(1)求證:DP=CG;
(2)判斷△PQR的形狀,請(qǐng)說(shuō)明理由.
解:(1)證明:在正方形ABCD中,
AD=CD,∠ADP=∠DCG=90°,
∠CDG+∠ADH=90°,
∵DH⊥AP,∴∠DAH+∠ADH=90°,
∴∠CDG=∠DAH,
∴△ADP≌△DCG,
∵DP,CG為全等三角形的對(duì)應(yīng)邊,
∴DP=CG.
(2)△PQR為等腰三角形.
∠QPR=∠DPA,∠PQR=∠CQE,
∵CQ=DP,由(1)的結(jié)論可知
∴CQ=CG,∵∠QCE=∠GCE,CE=CE,
∴△CEQ≌△CEG,即∠CQE=∠CGE,
∴∠PQR=∠CGE,
∵∠QPR=∠DPA,且(1)中證明△ADP≌△DCG,
∴∠PQR=∠QPR,
所以△PQR為等腰三角形.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com