【題目】興趣小組的同學(xué)要測量樹的高度.在陽光下,一名同學(xué)測得一根長為1米的竹竿的影長為0.4米,同時(shí)另一名同學(xué)測量樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺階上,測得此影子長為0.2米,一級臺階高為0.3米,如圖所示,若此時(shí)落在地面上的影長為4.4米,則樹高為

【答案】11.8
【解析】解:根據(jù)題意可構(gòu)造相似三角形模型如圖,

其中AB為樹高,EF為樹影在第一級臺階上的影長,BD為樹影在地上部分的長,ED的長為臺階高,并且由光沿直線傳播的性質(zhì)可知BC即為樹影在地上的全長;

延長FE交AB于G,則Rt△ABC∽Rt△AGF,

∴AG:GF=AB:BC=物高:影長=1:0.4

∴GF=0.4AG

又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,

∴GF=4.6

∴AG=11.54

∴AB=AG+GB=11.8,即樹高為11.8米.

【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的應(yīng)用,掌握測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車油箱中的余油量(升是它行駛的時(shí)間(小 時(shí)) 的一次函數(shù) 某天該汽車外出時(shí), 油箱中余油量與行駛時(shí)間的變化關(guān)系如圖:

1 根據(jù)圖象, 求油箱中的余油與行駛時(shí)間的函數(shù)關(guān)系

2 從開始算起, 如果汽車每小時(shí)行駛 40 千米, 當(dāng)油箱中余油 20 升時(shí), 該汽車行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD位于平面直角坐標(biāo)系中,ABy軸上,且其坐標(biāo)分別為A0,a)和B0-b),D點(diǎn)坐標(biāo)為(-c,a),CDx軸交于E. 其中a、b、c均為正數(shù),且滿足.

1)請判斷△ABD的形狀并說明理由.

2)如圖,將圖形沿AM折疊,使D落在x軸上F點(diǎn),若現(xiàn)有一長度為a的線段,可與線段EF、OF構(gòu)成直角三角形,求a的值.

3)若Px軸正半軸上一點(diǎn),且滿足∠APB=45°,請求出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空:如圖,于點(diǎn)D,于點(diǎn)E,,求的度數(shù).

解:∵,(已知)

∴( // )(

)(

∴( // )(

= )(等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個(gè)平面圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)關(guān)于整式乘法的等式.例如:計(jì)算左圖的面積可以得到等式(a+b)(a+2b)=a2+3ab+2b2

請解答下列問題:

1)觀察如圖,寫出所表示的等式:      ;

2)已知上述等式中的三個(gè)字母a,b,c可取任意實(shí)數(shù),若a7x5,b=﹣4x+2c=﹣3x+4,且a2+b2+c237,請利用(1)所得的結(jié)論求ab+bc+ac的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,有A(-13),B4,3),Cma),Dmb)(ab)四個(gè)互不重合的點(diǎn).

1ABx軸的位置關(guān)系是_____________,線段AB的長為__________;

2)觀察AB兩點(diǎn)的坐標(biāo)關(guān)系或規(guī)律,根據(jù)(1)題的結(jié)論回答:CDx軸的位置關(guān)系是____________,線段CD的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE,BF,BD.

(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)點(diǎn)P為拋物線上一點(diǎn),若SPAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①過一點(diǎn)有且只有一條直線與已知直線平行;②過一點(diǎn)有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)兩點(diǎn)的線段就是、兩點(diǎn)之間的距離,其中正確的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

同步練習(xí)冊答案