【題目】低碳環(huán)保,你我同行”.近幾年,各大城市的公共自行車給市民出行帶來了極大的方便.圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A.D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點(diǎn)EAB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

【答案】(1)15(2)58.2

【解析】解:(1)在Rt△ADF中,由勾股定理得,

AD=15(cm).

(2)AEADCDEC=15+30+15=60(cm).

過點(diǎn)EEHABH

在Rt△AEH中,sin∠EAH,

EHAE·sin∠EAHAB·sin75°≈ 60×0.97=58.2(cm).

答:點(diǎn)EAB的距離為58.2cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)共有800名學(xué)生,準(zhǔn)備調(diào)查他們對(duì)低碳知識(shí)的了解程度.

1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案:

方案一:調(diào)查八年級(jí)部分女生;

方案二:調(diào)查八年級(jí)部分男生;

方案三:到八年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.

請(qǐng)問其中最具有代表性的一個(gè)方案是_____;

2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖、圖所示),請(qǐng)你根據(jù)圖中信息,將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

3)請(qǐng)你估計(jì)該校八年級(jí)約有多少名學(xué)生比較了解低碳知識(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)知道(ab)2≥0,即a22ab+b2≥0.所以a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))

閱讀1:若a、b為實(shí)數(shù),且a0,b0

∵()2≥0a2+b≥0,a+b≥2(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))

閱讀2:若函數(shù)y=x(m0x0,m為常數(shù)).由閱讀1結(jié)論可知:xx當(dāng)xx2=mx=(m0)時(shí),函數(shù)y=x的最小值為2

閱讀理解上述內(nèi)容,解答下列問題:

問題1:當(dāng)x0時(shí),的最小值為    ;當(dāng)x0時(shí),的最大值為    

問題2:函數(shù)y=a+(a1)的最小值為    

問題3:求代數(shù)式(m>﹣2)的最小值,并求出此時(shí)的m的值.

問題4:如圖,四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AOB、COD的面積分別為416,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將二次函數(shù)y=x2-m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1,另有一次函數(shù)y=x+b的圖象記為y2,則以下說法:

①當(dāng)m=1,且y1y2恰好有三個(gè)交點(diǎn)時(shí)b有唯一值為1;

②當(dāng)b=2,且y1y2恰有兩個(gè)交點(diǎn)時(shí),m>4或0<m;

③當(dāng)m=-b時(shí),y1y2一定有交點(diǎn);

④當(dāng)m=b時(shí),y1y2至少有2個(gè)交點(diǎn),且其中一個(gè)為(0,m).

其中正確說法的序號(hào)為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AD=2AB,EBC的中點(diǎn),連結(jié)AE并延長交DC的延長線于點(diǎn)F

1)求證:DEAF

2)若∠B=60°,DE=4,求AB的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.(1)判斷直線CD⊙O的位置關(guān)系,并說明理由.

2)過點(diǎn)B⊙O的切線BE交直線CD于點(diǎn)E,若AC=2⊙O的半徑是3,求∠BEC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是長為1個(gè)單位的正方形.若學(xué)校位置的坐標(biāo)為A(12),解答以下問題:

(1)請(qǐng)?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);

(2)若體育館位置的坐標(biāo)為C(3,3),請(qǐng)?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,邊AB的垂直平分線OM與邊AC的垂直平分線ON交于點(diǎn)O,分別交BC于點(diǎn)D、E,已知△ADE的周長5cm

1)求BC的長;

2)分別連接OA、OBOC,若△OBC的周長為13cm,求OA的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案