精英家教網 > 初中數學 > 題目詳情
已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,如圖③,若AB=4cm,BC=8cm,動點P、Q分別從A、C兩點同時出發(fā),沿△AMB和△CDN各邊勻速運動一周.即點P自A→M→B→A停止,點Q自C→D→N→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
分析:(1)證法一:連接BD,根據兩直線平行,內錯角相等可得∠OBM=∠ODN,再根據矩形的對角線互相平分可得OB=OD,然后利用“角邊角”證明△OBM和△ODN全等,根據全等三角形對應邊相等即可證明;
證法二:根據矩形的中心對稱性可得B、D,M、N關于點O對稱,從而得到BM=DN;
(2)證法一:根據矩形的對邊平行且相等可得AD∥BC,AD=BC,然后求出AN=CM,再根據一組對邊平行且相等是平行四邊形證明四邊形AMCN是平行四邊形,根據翻折的性質可AM=CM,然后根據鄰邊相等的平行四邊形是菱形證明;
證法二:根據翻折的性質可得AN=NC,AM=MC,∠AMN=∠CMN,再根據兩直線平行,內錯角相等可得∠ANM=∠CMN,然后求出∠AMN=∠ANM,根據等角對等邊可得AM=AN,從而得到AM=MC=CN=NA,然后根據四條邊都相等的四邊形是菱形證明;
(3)先判斷出點P在BM,點Q在ND上時,才能構成平行四邊形,然后用t表示出PC、QA,再根據平行四邊形的對邊相等列出方程求解即可.
解答:解:(1)證法一:連接BD,則BD過點O,
∵AD∥BC,
∴∠OBM=∠ODN,
∵O是對角線的交點,
∴OB=OD,
在△OBM和△ODN中,
∠OBM=∠ODN
OB=OD
∠BOM=∠DON

∴△OBM≌△ODN(ASA),
∴BM=DN;

證法二:∵矩形ABCD是中心對稱圖形,點O是對稱中心,
∴得B、D,M、N關于點O對稱,
∴BM=DN;


(2)證法一:∵矩形ABCD,
∴AD∥BC,AD=BC,
∵BM=DN,
∴AD-DN=BC-BM,
即AN=CM,
∴四邊形AMCN是平行四邊形,
由翻折得,AM=CM,
∴四邊形AMCN是菱形;

證法二:由翻折得,AN=NC,AM=MC,∠AMN=∠CMN,
∵AD∥BC,
∴∠ANM=∠CMN,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=MC=CN=NA,
∴四邊形AMCN是菱形;

(3)設菱形AMCN的邊長為xcm,則BM=8-x,
在Rt△ABM中,AB2+BM2=AM2,
即42+(8-x)2=x2,
解得x=5,
∴AM=5cm,
顯然,當點P在AM上時,點Q在CD上,此時A、C、P、Q四點不可能構成平行四邊形,
同理,點P在AB上時,點Q在DN或CN上,此時A、C、P、Q四點也不可能構成平行四邊形,
因此,只有點P在BM上,點Q在DN上時,才能構成平行四邊形,
此時PC=QA,
∵點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t,
∴PC=PM+MC=PM+AM=5t,
QA=AD+CD-CQ=8+4-4t=12-4t,
∴5t=12-4t,
解得t=
4
3

∴以A、C、P、Q四點為頂點的四邊形是平行四邊形時,t=
4
3
秒.
點評:本題是四邊形綜合題型,主要考查了矩形的性質,全等三角形的判定與性質,翻折變換的性質,菱形的判定與性質,平行四邊形的性質,(3)判斷出以A、C、P、Q四點為頂點的四邊形是平行四邊形時,點P、Q的位置是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:矩形ABCD中,AB=1,點M在對角線AC上,直線l過點M且與AC垂直,與AD相交于點E.
(1)如果直線l與邊BC相交于點H(如圖1)AM=
1
3
AC且AD=a,求的AE長(用含a的代數式表示);
(2)在(1)中,直線l把矩形分成兩部分的面積比為2:5,求a的值;
(3)若AM=
1
4
AC,且直線l經過點B(如圖2),求AD的長;
(4)如果直線l分別與邊AD,AB相交于點E,F,AM=
1
4
AC,設AD的長為x,△AEF的面積為y,求y與x的函數關系式,并指出x的取值范圍(求x的取值范圍可不寫過程).精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知:矩形ABCD中,AD=2,點E、F分別在邊CD、AB上,且四邊形AECF是菱形精英家教網,tan∠DAE=
12
.求:
(1)DE的長;
(2)菱形AECF的面積?

查看答案和解析>>

科目:初中數學 來源: 題型:

23、已知在矩形ABCD中,AB=3,BC=6,如果以AD為直徑作圓,那么與這個圓相切的矩形的邊共有(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

已知在矩形ABCD中.
(1)設矩形的面積為6,AD=y,AB=x(0<x≤6),寫出y與x的函數關系,并在直角坐標系中畫出此函數的圖象.
(2)如圖矩形紙片ABCD,AB=4,AD=3.折疊紙片使得AD邊與對角線BD重合,折痕為DG,點A落在A′處,求△A′BG的面積與矩形ABCD的面積的比是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,矩形ABCD中,延長BC至E,使BE=BD,F為DE的中點,連結AF、CF.
(1)若AB=3,AD=4,求CF的長;
(2)求證:∠ADB=2∠DAF.

查看答案和解析>>

同步練習冊答案