【題目】操作探究:
數學研究課上,老師帶領大家探究《折紙中的數學問題》時,出示如圖1所示的長方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫一條截線段MN,將紙片沿MN折疊,MB與DN交于點K,得到△MNK.如圖2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改變折痕MN位置,△MNK始終是 三角形,請說明理由;
應用:
(3)愛動腦筋的小明在研究△MNK的面積時,發(fā)現KN邊上的高始終是個不變的值.根據這一發(fā)現,他很快研究出△KMN的面積最小值為,此時∠1的大小可以為 °
(4)小明繼續(xù)動手操作,發(fā)現了△MNK面積的最大值.請你求出這個最大值.
【答案】(1)、40;(2)、等腰;(3)、45°或135°(4)、最大值為1.3.
【解析】
試題分析:(1)、根據矩形的性質和折疊的性質求出∠KNM,∠KMN的度數,根據三角形內角和即可求解;
(2)、利用翻折變換的性質以及兩直線平行內錯角相等得出KM=KN;(3)、利用當△KMN的面積最小值為時,KN=BC=1,故KN⊥B′M,得出∠1=∠NMB=45°,同理當將紙條向下折疊時,∠1=∠NMB=135°;(4)、分情況一:將矩形紙片對折,使點B與D重合,此時點K也與D重合;情況二:將矩形紙片沿對角線AC對折,此時折痕即為AC兩種情況討論求解.
試題解析:(1)、如圖1, ∵四邊形ABCD是矩形, ∴AM∥DN. ∴∠KNM=∠1. ∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°, ∴∠MKN=40°.
(2)、等腰, 理由:∵AB∥CD,∴∠1=∠MND, ∵將紙片沿MN折疊, BGFYTTTQ ∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
(3)、如圖2,當△KMN的面積最小值為時,KN=BC=1,故KN⊥B′M, ∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理當將紙條向下折疊時,∠1=∠NMB=135°,
(4)、分兩種情況:
情況一:如圖3,將矩形紙片對折,使點B與D重合,此時點K也與D重合. MK=MB=x,則AM=5﹣x.
由勾股定理得12+(5﹣x)2=x2, 解得x=2.6. ∴MD=ND=2.6. S△MNK=S△MND=×1×2.6=1.3.
情況二:如圖4,將矩形紙片沿對角線AC對折,此時折痕即為AC. MK=AK=CK=x,則DK=5﹣x.
同理可得MK=NK=2.6. ∵MD=1, ∴S△MNK=×1×2.6=1.3. △MNK的面積最大值為1.3.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點D,AC邊的垂直平分線l2交BC于點E,l1與l2相交于點O,連接0B,OC,若△ADE的周長為6cm,△OBC的周長為16cm.
(1)求線段BC的長;
(2)連接OA,求線段OA的長;
(3)若∠BAC=120°,求∠DAE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】食品安全是老百姓關注的話題,在食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存和運輸.某飲料加工廠生產的A、B兩種飲料均需加入同種添加劑,A飲料每瓶需加該添加劑2克,B飲料每瓶需加該添加劑3克,已知270克該添加劑恰好生產了A、B兩種飲料共100瓶,問A、B兩種飲料各生產了多少瓶?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王周末騎電單車從家出發(fā)去商場買東西,當他騎了一段路時,想起要買一本書,于是原路返回到剛經過的新華書店,買到書店后繼續(xù)前往商場,如圖是他離家的距離與時間的關系 示意圖,請根據圖中提供的信息回答下列問題:
(1)小王從家到新華書店的路程是多少米?
(2)小王在新華書店停留了多少分鐘?
(3)買到書店,小王從新華書店到商場的汽車速度是多少米/分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正比例函數y=2x和反比例函數的圖象交于點A(m,﹣2).
(1)求反比例函數的解析式;
(2)觀察圖象,直接寫出正比例函數值大于反比例函數值時自變量x的取值范圍;
(3)若雙曲線上點C(2,n)沿OA方向平移 個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是小明家和學校所在地的簡單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點C為OP的中點,回答下列問題:
(1)圖中距小明家距離相同的是哪些地方?
(2)學校、商場和停車場分別在小明家的什么方位?
(3)如果學校距離小明家400m,那么商場和停車場分別距離小明家多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=ax+b(a≠0)、二次函數y=ax2+bx和反比例函數y= (k≠0)在同一直角坐標系中的圖象如圖所示,A點的坐標為(﹣2,0),則下列結論中,正確的是( )
A.b=2a+k
B.a=b+k
C.a>b>0
D.a>k>0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數的圖象經過點A(2,1),B(﹣1,﹣3).
(1)求此一次函數的解析式;
(2)求此一次函數的圖象與x軸、y軸的交點坐標;
(3)求此一次函數的圖象與兩坐標軸所圍成的三角形面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當的關系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com