【題目】(1)觀察下列各式: ……
你發(fā)現(xiàn)了什么規(guī)律?試用你發(fā)現(xiàn)的規(guī)律填空:
;
(2)請你用含一個字母的等式將上面各式呈現(xiàn)的規(guī)律表示出來,并用所學(xué)數(shù)學(xué)知識說明你所寫式子的正確性.
【答案】(1)50,74;(2)(n+2)2n2=4(n+1),說明見解析.
【解析】
(1)由62-42=4×5,5界于4和6之間的正整數(shù),112-92=4×10,10界于11和9之間的正整數(shù),172-152=4×16,16界于17和15之間的正整數(shù),可得出512-492=4×50,752-732=4×74;
(2)由(1)推出該規(guī)律為:(n+2)2-n2=4(n+1).
解:(1)由6242=4×5,5界于4和6之間的正整數(shù),
11292=4×10,10界于11和9之間的正整數(shù),
172152=4×16,16界于17和15之間的正整數(shù),
∴試著推出:512492=4×50,50界于49和51之間的正整數(shù),且左邊=右邊成立,
752732=4×74,74界于75和73之間的正整數(shù),且左邊=右邊成立;
(2)可以得出規(guī)律:(n+2)2n2=4(n+1),
左邊=(n+2)2n2=(n+2+n)(n+2n)=4(n+1),
左邊=右邊.
故答案為:(1)50,74;(2)(n+2)2n2=4(n+1),說明見解析.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,甲地到乙地的路程為450千米,一輛大貨車從甲地前往乙地運送物資,行駛1小時在途中某地出現(xiàn)故障,立即通知技術(shù)人員乘小汽車從甲地趕來維修(通知時間忽略不計),小汽車到達該地后經(jīng)過半小時修好大貨年后以原速原路返甲地,小汽車在返程途中當走到一半路程時發(fā)現(xiàn)有重要物品落在大貨車上,于是立即掉頭以原速追趕大貨車,追上大貨車取下物品(取物品時間忽略不計)后以原速原路返回甲地,大貨車修好后以原速前往乙地,如圖是兩車距甲地的路程y(千米)與大貨車所用時間x(小時)之間的函數(shù)圖象,則當小汽車第二次追上大貨車時,大貨車距離乙地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=10,BC=8,AC=6.點I為△ABC三條角平分線的交點,則點I到邊AB的距離為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進學(xué)生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖, 請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了 人;
(2)求文學(xué)社團在扇形統(tǒng)計圖中所占圓心角為 度;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有 1500 名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 .(填“變大”、“變小”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中的網(wǎng)格由單位正方形構(gòu)成,中,點坐標為,點坐標為,點坐標為.
(1)的長為_______;
(2)求證:;
(3)若以、、及點為頂點的四邊形為平行四邊形,寫出點在第一象限時的坐標______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使得函數(shù)值為0的自變量的值稱為函數(shù)的零點.例如,對于函數(shù)y=x﹣1,令y=0可得x=1,我們說1是函數(shù)y=x﹣1的零點.已知函數(shù)y=x2﹣2mx﹣2(m+3)(m為常數(shù))
(1)當m=0時,求該函數(shù)的零點.
(2)證明:無論m取何值,該函數(shù)總有兩個零點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的度數(shù)是( 。
A. 20°B. 30°C. 45°D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組的解,x,y均為負數(shù).
(1)求m的取值范圍;
(2)化簡:|m-5|+|m+1|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com