(2013•遂寧)如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=
14
,求BN的長.
分析:(1)根據(jù)切線的判定定理得出∠1+∠BCO=90°,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可;
(3)根據(jù)已知得出OE的長,進(jìn)而利用勾股定理得出EC,AC,BC的長,即可得出CD,利用(2)中相似三角形的性質(zhì)得出NB的長即可.
解答:(1)證明:∵△BCO中,BO=CO,
∴∠B=∠BCO,
在Rt△BCE中,∠2+∠B=90°,
又∵∠1=∠2,
∴∠1+∠BCO=90°,
即∠FCO=90°,
∴CF是⊙O的切線;
        
(2)證明:∵AB是⊙O直徑,
∴∠ACB=∠FCO=90°,
∴∠ACB-∠BCO=∠FCO-∠BCO,
即∠3=∠1,
∴∠3=∠2,
∵∠4=∠D,
∴△ACM∽△DCN;
                            
(3)解:∵⊙O的半徑為4,即AO=CO=BO=4,
在Rt△COE中,cos∠BOC=
1
4

∴OE=CO•cos∠BOC=4×
1
4
=1,
由此可得:BE=3,AE=5,由勾股定理可得:
CE=
CO2-EO2
=
42-12
=
15
,
AC=
CE2+AE2
=
(
15)2+52
=2
10
,
BC=
CE2+BE2
=
(
15)2+32
=2
6
,
∵AB是⊙O直徑,AB⊥CD,
∴由垂徑定理得:CD=2CE=2
15
,
∵△ACM∽△DCN,
CM
CN
=
AC
CD
,
∵點M是CO的中點,CM=
1
2
AO=
1
2
×4=2,
∴CN=
CM•CD
AC
=
2×2
15
2
10
=
6

∴BN=BC-CN=2
6
-
6
=
6
點評:此題主要考查了相似三角形的判定與性質(zhì)以及切線的判定和勾股定理的應(yīng)用等知識,根據(jù)已知得出△ACM∽△DCN是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遂寧)如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于
1
2
MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遂寧)如圖,已知四邊形ABCD是平行四邊形,DE⊥AB,DF⊥BC,垂足分別是E、F,并且DE=DF.求證:
(1)△ADE≌△CDF;
(2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遂寧)如圖,有一塊含有60°角的直角三角板的兩個頂點放在矩形的對邊上.如果∠1=18°,那么∠2的度數(shù)是
12°
12°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遂寧)如圖,△ABC的三個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B逆時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則圖中陰影部分的面積約是
7.2
7.2
.(π≈3.14,結(jié)果精確到0.1)

查看答案和解析>>

同步練習(xí)冊答案