【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

【答案】C

【解析】

根據(jù)兩種三角板的各角的度數(shù),利用平行線的判定與性質(zhì)結(jié)合已知條件對各個結(jié)論逐一驗證,即可得出答案.

∵∠CAB=EAD=90°,

∴∠1=CAB-2,∠3=EAD-2,

∴∠1=3

∴(A)正確;

∵∠2=30°,

∴∠1=90°-30°=60°,

∵∠E=60°

∴∠1=E,

ACDE

∴(B)正確;

∵∠2=30°

∴∠3=90°-30°=60°,

∵∠B=45°,

BC不平行于AD,

∴(C)錯誤;

ACDE可得∠4=C,

∴(D)正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標(biāo)準劃分成“不合格”、“合格”、“優(yōu)秀”三個等級.為了了解電腦培訓(xùn)的效果,隨機抽取其中32名學(xué)生兩次考試考分等級制成統(tǒng)計圖(如圖),試回答下列問題:
(1)這32名學(xué)生經(jīng)過培訓(xùn),考分等級“不合格”的百分比由下降到
(2)估計該校640名學(xué)生,培訓(xùn)后考分等級為“合格”與“優(yōu)秀”的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在三角形ABC中,點E,F(xiàn)分別為線段AB,AC上任意兩點,EG交BC于點G,交AC的延長線于點H,∠1+∠AFE=180°.

(1)證明:BC∥EF;

(2)如圖②,若∠2=∠3,∠BEG=∠EDF,證明:DF平分∠AFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證

(1)請你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.
(2)利用題中的結(jié)論,解答下列問題:在邊長為3的菱形ABCD中,O為對角線AC,BD的交點,E,F(xiàn)分別為線段AO,DO的中點,連接BE,CF并延長交于點M,BM,CM分別交AD于點G,H,如圖2所示,求MG2+MH2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.

(1)若∠AOB=60°,OM=4,OQ=1,求證:CN⊥OB
(2)當(dāng)點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問:的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.
②設(shè)菱形OMPQ的面積為S1 , △NOC的面積為S2 , 求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人都去同一家超市購買大米各兩次,甲每次購買50千克的大米,乙每次購買50元的大米,這兩人第一次購買大米時售價為每千克m元,第二次購買大米時售價為每千克n(m≠n),若規(guī)定誰兩次購買大米的平均單價低,誰的購買方式就合算,則下列觀點正確的是(  )

A. 甲的購買方式合算 B. 乙的購買方式合算

C. 甲、乙的購買方式同樣合算 D. 不能判斷誰的購買方式合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊的正方形EFGH的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20,射線OB的方向是北偏西40,ODOB的反向延長線,OC是∠AOD的平分線。

1)求∠BOC的度數(shù);

2)求出射線OC的方向。

查看答案和解析>>

同步練習(xí)冊答案