如圖,一個(gè)60°的角的三角形紙片,剪去這個(gè)60°角后,得到一個(gè)四邊形,則∠1+∠2的度數(shù)為( 。
A、120°B、180°C、240°D、300°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠C=∠A+∠B,則△ABC的形狀是( 。
A、等邊三角形B、銳角三角形C、直角三角形D、鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一組鄰邊相等,一個(gè)角是直角的四邊形是正方形.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)多邊形的每個(gè)外角都等于36°,則這個(gè)多邊形的邊數(shù)是( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若n邊形的內(nèi)角和是1080°,則n的值是(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B、C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依此操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為
 
,求此時(shí)線段EF的長(zhǎng);
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為
 
,此時(shí)AE與BF的數(shù)量關(guān)系是
 
;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P、Q分別在邊AC、BC上,其中CQ=a,CP=b.過點(diǎn)P作AC的垂線l交邊AB于點(diǎn)R,作△PQR關(guān)于直線l對(duì)稱的圖形,得到△PQ′R,我們把這個(gè)操作過程記為CZ[a,b].
(1)若CZ[a,b]使點(diǎn)Q′恰為AB的中點(diǎn),則b=
 
;當(dāng)操作過程為CZ[3,4]時(shí),△PQR與△PQ′R組合而成的軸對(duì)稱圖形的形狀是
 

(2)若a=b,則:
①當(dāng)a為何值時(shí),點(diǎn)Q′恰好落在AB上?
②若記△PQ′R與△PAR重疊部分的面積為S(cm2),求S與a的函數(shù)關(guān)系式,并寫出a的取值范圍;
(3)當(dāng)四邊形PQRQ′為平行四邊形時(shí),求四邊形PQRQ′面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在銳角△ABC中,AB=5,AC=4
2
,∠ACB=45°.
計(jì)算:求BC的長(zhǎng);
操作:
將圖1中的△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.如圖2,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí).
(1)證明:A1C1⊥CC1;
(2)求四邊形A1BCC1的面積;
探究:
將圖1中的△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.連結(jié)AA1,CC1,如圖3.若△ABA1的面積為5,求點(diǎn)C到BC1的距離;
拓展:
將圖1中的△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,如圖4.
(1)若點(diǎn)P是線段AC的中點(diǎn),求線段EP1長(zhǎng)度的最大值與最小值;
(2)若點(diǎn)P是線段AC上的任一點(diǎn),直接寫出線段EP1長(zhǎng)度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD的邊長(zhǎng)為2,過點(diǎn)C作EF⊥AC交AB、AD的延長(zhǎng)線于E、F,則
1
AE
+
1
AF
=( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案