【題目】如圖,在△ABC中,∠BAC的平分線AD交BC于E,交△ABC的外接圓⊙O于D.

(1)求證:△ABE∽△ADC;

(2)連接BD,OB,OC,OD,且OD交BC于點(diǎn)F,若點(diǎn)F恰好是OD的中點(diǎn).求證:四邊形OBDC是菱形.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

1)根據(jù)圓周角定理求出,根據(jù)相似三角形的判定推出即可;

2)根據(jù)垂徑定理求出,根據(jù)線段垂直平分線性質(zhì)得出,根據(jù)菱形的判定推出即可.

證明:(1)∵∠BAC的平分線為AD,

∴∠BAE=∠CAD,

,

∴△ABE∽△ADC;

(2)∵∠BAD=∠CAD

,

OD為半徑,

DOBC(垂徑定理),

FOD的中點(diǎn),

OBBD,OCCD,

OBOC

OBBDCDOC,

∴四邊形OBDC是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某測(cè)量隊(duì)在山腳A處測(cè)得山上樹(shù)頂仰角為45°(如圖),測(cè)量隊(duì)在山坡上前進(jìn)600米到D處,再測(cè)得樹(shù)頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹(shù)高為15米,則山高為( 。ň_到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車租賃行業(yè)現(xiàn)在火爆起來(lái).小明開(kāi)辦了一家汽車租賃公司擁有汽車20,在旺季每輛車的每天租金為600元時(shí),可全部租出當(dāng)每輛車的每天租金增加50元時(shí)未租出的車將增加一輛,租出的車輛每輛每天需要維護(hù)費(fèi)200,未租出的車輛每輛每天需要維護(hù)費(fèi)100每天其他開(kāi)銷共計(jì)1000

(1)當(dāng)每輛車的租金為1000元時(shí),每天能租出多少輛車?每天凈收益為多少元?

(2)當(dāng)每輛車的每天租金定為多少元時(shí),租賃公司的每天凈收益最大?最大凈收益為多少元?(每天凈收益=總租金﹣?zhàn)獬鋈ボ囕v維護(hù)費(fèi)﹣未租出去車輛維護(hù)費(fèi)﹣每天其他開(kāi)銷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的方程x2-2m1xm2=0.

1)當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?

2)為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解一路段車輛行駛速度的情況,交警統(tǒng)計(jì)了該路段上午7::09:00來(lái)往車輛的車速(單位:千米/時(shí)),并繪制成如圖所示的條形統(tǒng)計(jì)圖.這些車速的眾數(shù)、中位數(shù)分別是( 。

A. 眾數(shù)是80千米時(shí),中位數(shù)是60千米時(shí)

B. 眾數(shù)是70千米時(shí),中位數(shù)是70千米時(shí)

C. 眾數(shù)是60千米時(shí),中位數(shù)是60千米時(shí)

D. 眾數(shù)是70千米時(shí),中位數(shù)是60千米時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3=

(2)拓展:用轉(zhuǎn)化思想求方程的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線y=+bx﹣4經(jīng)過(guò)A(﹣4,0),C(2,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;

(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),點(diǎn)B是拋物線與y軸交點(diǎn).判斷有幾個(gè)位置能夠使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018531日是世界衛(wèi)生組織發(fā)起的第31個(gè)世界無(wú)煙日.重慶育才中學(xué)學(xué)生處鼓勵(lì)學(xué)生積極宣傳,并設(shè)計(jì)調(diào)查問(wèn)卷,以更好地宣傳吸煙的危害,七年級(jí)58班數(shù)學(xué)興趣小組第一組的5名同學(xué)設(shè)計(jì)了如下調(diào)查問(wèn)卷,隨機(jī)調(diào)查了部分吸煙人,并將調(diào)查結(jié)果繪制成統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問(wèn)題:

(1)E選項(xiàng)所在扇形的圓心角的度數(shù)是   ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整.

(2)重慶育才中學(xué)七年級(jí)58班數(shù)學(xué)興趣小組第一組的5名同學(xué)中有兩名男同學(xué)們,學(xué)校學(xué)生處準(zhǔn)備從七年級(jí)58班數(shù)學(xué)興趣小組第一組的5名同學(xué)中選取兩名同學(xué)參加世界無(wú)煙日活動(dòng)的總結(jié)會(huì),請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

(1)求m的值;

(2)先作的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫(xiě)出變化后圖象的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案