【題目】如圖,在四邊形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于點(diǎn)E,過點(diǎn)C作CF∥AE交AB于點(diǎn)F. 求證:CF平分∠BCD.
【答案】解:∵∠B=∠D=90°, ∴∠DAB+∠BCD=180°,
∵EA∥CF,
∴∠3=∠1,
∵∠3+∠4=90°,
∴∠1+∠4=90°,
∴∠2+∠5=90°,
∵AE平分∠BAD交CD于點(diǎn)E,
∴∠4=∠6,
∴∠4=∠5,
∴∠1=∠2,
∴CF平分∠BCD.
【解析】根據(jù)四邊形的內(nèi)角和得到∠DAB+∠BCD=180°,根據(jù)平行線的性質(zhì)得到∠3=∠1,等量代換得到∠2+∠5=90°,根據(jù)角平分線的定義得到∠4=∠6,等量代換得到∠1=∠2,于是得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì)和多邊形內(nèi)角與外角,需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若將半徑為6cm的圓形紙片剪去三分之一,剩下的部分圍成一個圓錐的側(cè)面,則圍成圓錐的全面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用計算器求sin20°+tan54°33′的結(jié)果等于(結(jié)果精確到0.01)( 。
A.2.25
B.1.55
C.1.73
D.1.75
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的外心是指什么線的交點(diǎn)?( 。
A. 三邊中線B. 三內(nèi)角的平分線
C. 三邊高線D. 三邊垂直平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個量之間的同一關(guān)系.例如:101=10,d(10)=1
(1)根據(jù)勞格數(shù)的定義,填空:d(102)= ,
(2)勞格數(shù)有如下運(yùn)算性質(zhì):若m、n為正數(shù),則d(mn)=d(m)+d(n),d( )=d(m)﹣d(n). 根據(jù)運(yùn)算性質(zhì),填空: =(a為正數(shù)),若d(2)=0.3010,則d(16)= , d(5)= ,
(3)如表中與數(shù)x對應(yīng)的勞格數(shù)d(x)有且只有兩個是錯誤的
x | 1.5 | 3 | 5 | 6 | 8 | 9 | 18 | 27 |
d(x) | 3a﹣b+c | 2a+b | a﹣c | 1+a+b+c | 3﹣3a+3c | 4a+2b | 3﹣b﹣2c | 6a+3b |
請找出錯誤的勞格數(shù),并表格中直接改正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上海世博會的某紀(jì)念品原價168元,連續(xù)兩次降價a%后售價為128元,下面所列方程中正確的是
A. 168(1+a%)2=128 B. 168(1-a%)2=128
C. 168(1-2a%)=128 D. 168(1-a2%)=128
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列說法正確的是( )
A.若AB∥DC,則∠1=∠2
B.若AD∥BC,則∠3=∠4
C.若∠1=∠2,則AB∥DC
D.若∠2+∠3+∠A=180°,則AB∥DC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com