【題目】如圖,AD是△ABC的角平分線,DFAB,垂足為F,DE=DG,ADG和△AED的面積分別為5038,則△EDF的面積為(

A. 6B. 12C. 4D. 8

【答案】A

【解析】

過點DDHACH,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,然后利用“HL”證明RtDEFRtDGH全等,根據(jù)全等三角形的面積相等可得SEDF=SGDH,設面積為S,然后根據(jù)SADF=SADH列出方程求解即可.

解:如圖,過點DDHACH,
ADABC的角平分線,DFAB,
DF=DH,
RtDEFRtDGH中,,
RtDEFRtDGHHL),
SEDF=SGDH,設面積為S,
同理RtADFRtADH,
SADF=SADH
38+S=50-S,
解得S=6
故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分…將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,則稱∠BAC是△ABC的好角.

(1)若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C (設∠B>∠C)之間的等量關系為
(2)若一個三角形的最小角是4°,且該三角形的三個角均是此三角形的好角.請寫出符合要求三角形的另兩個角的度數(shù) . (寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程(組):

14x-2=6x-10

2

(3)

4

5

6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點.

a.原四邊形ABCD的對角線AC、BD滿足________時,四邊形EFGH是矩形.

b.原四邊形ABCD的對角線AC、BD滿足________時,四邊形EFGH是菱形.

c.原四邊形ABCD的對角線AC、BD滿足________時,四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)圖象經(jīng)過(4,-9)(3,5)兩點.

①求一次函數(shù)解析式.

求圖象和坐標軸交點坐標.并畫出圖象.

③求圖象和坐標軸圍成三角形面積.

若點(2,a)在函數(shù)圖象上,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+6x軸、y軸分別交于EF.點E坐標為(-80),點A的坐標為(-6,0)

1)求k的值;

2)若點P(x,y)是第二象限內(nèi)的直線上的一個動點,當點P運動過程中,試寫出三角形OPA的面積Sx的函數(shù)關系式,并寫出自變量x的取值范圍;

3)探究:當P運動到什么位置時,三角形OPA的面積為9,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好放松心情,上周六,小紅媽媽開車帶著小紅一家到外郊游,出發(fā)前汽車油箱內(nèi)有一定量的油.行駛過程中油箱中剩余油量()與行駛時間(小時)的關系如下表,請根據(jù)表格回答下列問題:

時間/小時

0

1

2

3

4

5

郵箱剩余油量/

50

45

40

35

30

25

1)汽車行駛前油箱里有_____________升汽油,汽車每小時耗油____________升;

2)請寫出的關系式;

3)當汽車行駛24小時時,油箱中還剩余多少升油?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線l將這八個正方形分成面積相等的兩部分,則該直線l的解析式為( )

A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩枚質地均勻的正方體骰子,每枚骰子的六個面上都分別標有數(shù)字1、2、3、4、5、6.同時投擲這兩枚骰子,以朝上一面所標的數(shù)字為擲得的結果,那么所得結果之和為9的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案