【題目】綜合與實(shí)踐:

問題情境:在矩形ABCD中,點(diǎn)EBC邊的中點(diǎn),將ABE沿直線AE翻折,使點(diǎn)B與點(diǎn)F重合,直線AF交直線CD于點(diǎn)G.

特例探究 實(shí)驗(yàn)小組的同學(xué)發(fā)現(xiàn):

1)如圖1,當(dāng)ABBC時(shí),AGBCCG,請(qǐng)你證明該小組發(fā)現(xiàn)的結(jié)論;

2)當(dāng)ABBC4時(shí),求CG的長;

延伸拓展:(3)實(shí)知小組的同學(xué)在實(shí)驗(yàn)小組的啟發(fā)下,進(jìn)一步探究了當(dāng)ABBC2時(shí),線段AG,BCCG之間的數(shù)量關(guān)系,請(qǐng)你直接寫出實(shí)知小組的結(jié)論:___________

【答案】1)見解析;(21;(3AGBCCG

【解析】

1)如圖1中,連接EG.只要證明EGF≌△EGC即可解決問題;

2)只要證明ABE∽△ECG,即可推出,由此即可解決問題;

3)如圖2中,連接EG.由AEB≌△AEF,EGF≌△EGC,推出AB=AF,BE=EF=EC,FG=GC,由ABBC=BC=2,推出AB=BC,可得AG=AF+FG=AB+CG=BC+CG

解:(1)證明:連接EG.

∵△AEF是由△AEB翻折得到,點(diǎn)EBC邊的中點(diǎn),

EBEFEC,ABAF,∠AFE=∠B=∠C90°.

RtEGFRtEGC中,,

RtEGFRtEGC(HL)

FGGC.

ABAFBC,

AGAFFGBCCG.

(2)∵△EGF≌△EGC,

∴∠GEF=∠GEC.

∵∠AEB=∠AEF,∠BEC180°,

∴∠AEG90°.

∴∠AEB+∠GEC90°,∠AEB+∠BAE90°.

∴∠GEC=∠BAE.

∵∠B=∠C,

∴△ABE∽△ECG.

EC2,

CG1

3)如圖2中,連接EG

△AEB△AEF△EGF△EGC,

AB=AF,BE=EF=EC,FG=GC,

ABBC=BC=∶2,

AB=BC,

AG=AF+FG=AB+CG=BC+CG

AG=BC+CG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,)的頂點(diǎn)是,拋物線軸交于點(diǎn),與直線交于點(diǎn).過點(diǎn)軸于點(diǎn),平移拋物線使其經(jīng)過點(diǎn)、得到拋物線),拋物線軸的另一個(gè)交點(diǎn)為.

(1)若,,求點(diǎn)的坐標(biāo)

(2)若,求的值.

(3)若四邊形為矩形,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,過點(diǎn)A作⊙O的切線交對(duì)角線DB的延長線于點(diǎn)F,則下列結(jié)論不成立的是( 。

A. AEBD B. AB=BF C. AFCD D. DF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,DE分別是BCCB延長線上的點(diǎn),且,連接AD、AE,BM、CN分別是△ABE和△ACD的高線,垂足分別為M、N BG、CH分別是∠ABE和∠ACD的平分線,分別交AE、AD于點(diǎn)G、H.

證明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦BC=4cmF是弦BC的中點(diǎn),∠ABC=60°.若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā)在AB上沿著A→B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0≤t8),連接EF,當(dāng)△BEF是直角三角形時(shí),t(s)的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的邊OAx軸上,邊OCy軸上,點(diǎn)B的坐標(biāo)為(10,8),沿直線OD折疊矩形,使點(diǎn)A正好落在BC上的E處,E點(diǎn)坐標(biāo)為(6,8),拋物線y=ax2+bx+c經(jīng)過O、A、E三點(diǎn).

1)求此拋物線的解析式;

2)求AD的長;

3)點(diǎn)P是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)△PAD的周長最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+3分別與x軸、y軸交于點(diǎn)A、C,直線ymx+分別與x軸、y軸交于點(diǎn)B、D,直線AC與直線BD相交于點(diǎn)M(﹣1,b

1)不等式x+3≤mx+的解集為   

2)求直線AC、直線BDx軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;.其中正確的是________________

查看答案和解析>>

同步練習(xí)冊(cè)答案