如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°, 該花圃的面積為S米2.
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=時(shí)x的值;
②如果墻長(zhǎng)為24米,試問S有最大值還是最小值?這個(gè)值是多少?
解:(1)∵AB=CD=x米,∴BC=40-AB-CD=(40-2x)米.
(2)①如圖,過點(diǎn)B、C分別作BE⊥AD于E,CF⊥AD于F,
在Rt△ABE中,AB=x,∠BAE=60°
∴AE=x,BE=x.同理DF=x,CF=x
又EF=BC=40-2x
∴AD=AE+EF+DF=x+40-2x+x=40-x
∴S= (40-2x+40-x)?x=x(80-3x)
= (0<x<20)
當(dāng)S=時(shí),=
解得:x1=6,x2=(舍去).∴x=6
②由題意,得40-x≤24,解得x≥16,
結(jié)合①得16≤x<20
由①,S==
∵a=<0
∴函數(shù)圖象為開口向下的拋物線的一段(附函數(shù)圖象草圖如左).
其對(duì)稱軸為x=,∵16>,由左圖可知,
當(dāng)16≤x<20時(shí),S隨x的增大而減小∴當(dāng)x=16時(shí),S取得最大值,
此時(shí)S最大值=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(21):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:《第23章 一元二次方程》2009年單元測(cè)試卷(一)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年福建省泉州市一中九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com