如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的精英家教網(wǎng)腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93
3
時(shí)x的值;
②如果墻長(zhǎng)為24米,試問(wèn)S有最大值還是最小值?這個(gè)值是多少?
分析:(1)已知AB=CD=x,則易求BC的值.
(2)①第二小題需要輔助線的幫助,作BE、CF分別垂直AD,易求出各邊以及梯形高的值.利用梯形面積公式可求出S與x的關(guān)系.②求出該函數(shù)的對(duì)稱軸后畫(huà)圖可知x=16時(shí),函數(shù)有最大值.
解答:解:(1)∵AB=CD=x米,
∴BC=40-AB-CD=(40-2x)米.(3分)

(2)①如圖,
過(guò)點(diǎn)B、C分別作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60°
精英家教網(wǎng)∴AE=
1
2
x,BE=
3
2
x,
同理DF=
1
2
x,CF=
3
2
x
又EF=BC=40-2x
∴AD=AE+EF+DF=
1
2
x+40-2x+
1
2
x=40-x(4分)
∴S=
1
2
(40-2x+40-x)•
3
2
x=
3
4
x(80-3x)(0<x<20)(6分)
當(dāng)S=93
3
時(shí),-
3
4
3
x2+20
3
x=93
3
,
解得:x1=6,x2=20
2
3
(舍去).
∴x=6(8分)
②由題意,得40-2x+
1
2
x×2≤24,解得x≥16,
結(jié)合①得16≤x<20(9分)
由①,S=-
3
4
3
x2+20
3
x=-
3
4
3
(x-
40
3
)2+
400
3
3

精英家教網(wǎng)∵a=-
3
3
4
<0
∴函數(shù)圖象為開(kāi)口向下的拋物線的一段(附函數(shù)圖象草圖如左).
其對(duì)稱軸為x=
40
3
,
∵16>
40
3
,由左圖可知,
當(dāng)16≤x<20時(shí),S隨x的增大而減。11分)
∴當(dāng)x=16時(shí),S取得最大值,(12分)
此時(shí)S最大值=-
3
4
3
×162+20
3
×16=128
3
m2.(13分)
點(diǎn)評(píng):求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法.本題主要考查二次函數(shù)的運(yùn)用,運(yùn)算較復(fù)雜,難度偏難.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(21):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時(shí)x的值;
②如果墻長(zhǎng)為24米,試問(wèn)S有最大值還是最小值?這個(gè)值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《第23章 一元二次方程》2009年單元測(cè)試卷(一)(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時(shí)x的值;
②如果墻長(zhǎng)為24米,試問(wèn)S有最大值還是最小值?這個(gè)值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年福建省泉州市一中九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時(shí)x的值;
②如果墻長(zhǎng)為24米,試問(wèn)S有最大值還是最小值?這個(gè)值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2009•泉州)如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長(zhǎng)為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長(zhǎng)為x米.
(1)請(qǐng)求出底邊BC的長(zhǎng)(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時(shí)x的值;
②如果墻長(zhǎng)為24米,試問(wèn)S有最大值還是最小值?這個(gè)值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案