【題目】觀察下列各式:
=1+ =1
=1+ =1
=1+ =1
請(qǐng)你根據(jù)上面三個(gè)等式提供的信息,猜想:
(1) =
(2)請(qǐng)你按照上面每個(gè)等式反映的規(guī)律,寫出用n(n為正整數(shù))表示的等式:;
(3)利用上述規(guī)律計(jì)算: (仿照上式寫出過程)

【答案】
(1)1
(2)=1+
(3)

解:


【解析】解:(1) =1 =1 ;所以答案是:1
(2) =1+ =1+ ;所以答案是: =1+ ;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次根式的性質(zhì)與化簡(jiǎn)的相關(guān)知識(shí),掌握1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡(jiǎn).2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)為( ) ①柱體的上、下兩個(gè)面一樣大;②圓柱的側(cè)面展開圖是長(zhǎng)方形;③正方體有6個(gè)頂點(diǎn);④圓錐有2個(gè)面,且都是曲面;⑤球僅由1個(gè)面圍成,這個(gè)面是平面;⑥三棱柱有5個(gè)面,且都是平面.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是(

A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】xmy2與-xyn是同類項(xiàng),則m等于

A. 1B. 1C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是(
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南中國(guó)海是中國(guó)固有領(lǐng)海,我漁政船經(jīng)常在此海域執(zhí)勤巡察.一天我漁政船停在小島A北偏西37°方向的B處,觀察A島周邊海域.據(jù)測(cè)算,漁政船距A島的距離AB長(zhǎng)為10海里.此時(shí)位于A島正西方向C處的我漁船遭到某國(guó)軍艦的襲擾,船長(zhǎng)發(fā)現(xiàn)在其北偏東50°的方向上有我方漁政船,便發(fā)出緊急求救信號(hào).漁政船接警后,立即沿BC航線以每小時(shí)30海里的速度前往救助,問漁政船大約需多少分鐘能到達(dá)漁船所在的C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問題:

(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過程,若不成立,請(qǐng)說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD,點(diǎn)M,N分別在AB,BCBMN沿MN翻折,FMN,MFAD,FNDCB__________

查看答案和解析>>

同步練習(xí)冊(cè)答案