【題目】如圖,在銳角中,延長(zhǎng)到點(diǎn),點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,分別交、的平分線于,兩點(diǎn),連接、.在下列結(jié)論中.;②;③若,,則的長(zhǎng)為6;④當(dāng)時(shí),四邊形是矩形.其中正確的是( )

A. ①④B. ①②C. ①②③D. ②③④

【答案】A

【解析】

①只要證明OC=OE,OC=OF即可.

②首先證明∠ECF=90°,若EC=CF,則∠OFC=45°,顯然不可能,故②錯(cuò)誤,

③利用勾股定理可得EF=13,推出OC=6.5,故③錯(cuò)誤.

④根據(jù)矩形的判定方法即可證明.

MNCB,

∴∠OEC=BCE,∠OFC=ACF

∵∠ACE=BCE,∠ACF=DCF,

∴∠OEC=OCE,∠OFC=OCF,

OC=OE=OF,故①正確,

∵∠BCD=180°,

∴∠ECF=90°

EC=CF,則∠OFC=45°,顯然不可能,故②錯(cuò)誤,

∵∠ECF=90°,EC=12CF=5,

EF==13,

OC=EF=6.5,故③錯(cuò)誤,

OE=OF,OA=OC,

∴四邊形AECF是平行四邊形,

∵∠ECF=90°,

∴四邊形AECF是矩形.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長(zhǎng)為2、寬為aa大于1且小于2)的長(zhǎng)方形紙片按如圖①所示的方式折疊并壓平,剪下一個(gè)邊長(zhǎng)等于長(zhǎng)方形寬的正方形,稱為第一次操作:再把剩下的長(zhǎng)方形按如圖②所示的方式折疊并壓平,剪下個(gè)邊長(zhǎng)等于此時(shí)長(zhǎng)方形寬的正方形,稱為第二次操作:如此反復(fù)操作下去,若在第n次操作后,剩下的長(zhǎng)方形恰為正方形,則操作終止當(dāng)n=3時(shí),a的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,連接點(diǎn)上一點(diǎn),使得連接于點(diǎn),作的延長(zhǎng)線于點(diǎn)

1)求證:

2)若的長(zhǎng).

3)在(2)的條件下,將沿著對(duì)折得到點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接試求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市A,B兩個(gè)蔬菜基地得知四川C,D兩個(gè)災(zāi)民安置點(diǎn)分別急需蔬菜240t260t的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運(yùn)C,D兩個(gè)災(zāi)區(qū)安置點(diǎn).從A地運(yùn)往C,D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C,D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.

1)請(qǐng)?zhí)顚懴卤,并求兩個(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值;

C

D

總計(jì)/t

A

200

B

x

300

總計(jì)/t

240

260

500

2)設(shè)A,B兩個(gè)蔬菜基地的總運(yùn)費(fèi)為w元,求出wx之間的函數(shù)關(guān)系式,并求

總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;

3)經(jīng)過搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)動(dòng)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小芳身高1.6米,此時(shí)太陽光線與地面的夾角為45°

1)若小芳正站在水平地面A處上時(shí),那么她的影長(zhǎng)為多少米?

2)若小芳來到一個(gè)坡度i=的坡面底端B處,當(dāng)她在坡面上至少前進(jìn)多少米時(shí),小芳的影子恰好都落在坡面上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在⊙O上,過點(diǎn)D的切線交直徑AB的延長(zhǎng)線于點(diǎn)P,DCAB于點(diǎn)C

1)求證:DB平分∠PDC;

2)如果DC = 6,,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,將A、B、C三個(gè)字母隨機(jī)填寫在三個(gè)空格中(每空填一個(gè)字母,每空中的字母不重復(fù)),請(qǐng)你用畫樹狀圖或列表的方法求從左往右字母順序恰好是A、B、C的概率;

(2)若在如圖三個(gè)空格的右側(cè)增加一個(gè)空格,將A、B、C、D四個(gè)字母任意填寫其中(每空填一個(gè)字母,每空中的字母不重復(fù)),從左往右字母順序恰好是A、B、C、D的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D

1)求證:AC平分∠DAB;

2)求證:AC2=ADAB

3)若AD=,sinB=,求線段BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案