【題目】某市A,B兩個(gè)蔬菜基地得知四川C,D兩個(gè)災(zāi)民安置點(diǎn)分別急需蔬菜240t和260t的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運(yùn)C,D兩個(gè)災(zāi)區(qū)安置點(diǎn).從A地運(yùn)往C,D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C,D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.
(1)請(qǐng)?zhí)顚?xiě)下表,并求兩個(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值;
C | D | 總計(jì)/t | |
A | 200 | ||
B | x | 300 | |
總計(jì)/t | 240 | 260 | 500 |
(2)設(shè)A,B兩個(gè)蔬菜基地的總運(yùn)費(fèi)為w元,求出w與x之間的函數(shù)關(guān)系式,并求
總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;
(3)經(jīng)過(guò)搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)動(dòng)方案.
【答案】(1)見(jiàn)解析;(2)w=2x+9200,方案見(jiàn)解析;(3)0<m<2時(shí),(2)中調(diào)運(yùn)方案總運(yùn)費(fèi)最。m=2時(shí),在40x240的前提下調(diào)運(yùn)方案的總運(yùn)費(fèi)不變;2<m<15時(shí),x=240總運(yùn)費(fèi)最小.
【解析】
(1)根據(jù)題意可得解.
(2)w與x之間的函數(shù)關(guān)系式為:w=20(240x)+25(x40)+15x+18(300x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運(yùn)費(fèi)最小的調(diào)運(yùn)方案.
(3)根據(jù)題意得出w與x之間的函數(shù)關(guān)系式,然后根據(jù)m的取值范圍不同分別分析得出總運(yùn)費(fèi)最小的調(diào)運(yùn)方案.
解:(1)填表:
依題意得:20(240x)+25(x40)=15x+18(300x).
解得:x=200.
(2)w與x之間的函數(shù)關(guān)系為:w=20(240x)+25(x40)+15x+18(300x)=2x+9200.
依題意得:
∴40x240
在w=2x+9200中,∵2>0,
∴w隨x的增大而增大,
故當(dāng)x=40時(shí),總運(yùn)費(fèi)最小,
此時(shí)調(diào)運(yùn)方案為如表.
(3)由題意知w=20(240x)+25(x40)+(15-m)x+18(300x)=(2m)x+9200
∴0<m<2時(shí),(2)中調(diào)運(yùn)方案總運(yùn)費(fèi)最小;
m=2時(shí),在40x240的前提下調(diào)運(yùn)
方案的總運(yùn)費(fèi)不變;
2<m<15時(shí),x=240總運(yùn)費(fèi)最小,
其調(diào)運(yùn)方案如表二.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的進(jìn)步,信息技術(shù)越來(lái)越發(fā)達(dá),人民獲得社會(huì)新聞信息的途徑日益增多,為了解常德市民“獲取新聞的最主要途徑”,某報(bào)社記者在全市城區(qū)范圍內(nèi)隨機(jī)抽取了n名市民,對(duì)其獲取新聞的最主要途徑進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷中的途徑有:A.電腦上網(wǎng);B.手機(jī)上網(wǎng);C.電視;D.報(bào)紙;E.其他.每位市民在問(wèn)卷調(diào)查時(shí)都按要求只選擇了其中一種最主要的途徑.記者收回了全部問(wèn)卷后,將收集到的數(shù)據(jù)整理并繪制成如圖不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問(wèn)題:
(l)求n的值.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)常德市城區(qū)80萬(wàn)人中.將B途徑作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)
(1)mn﹣4mn;
(2)3a2﹣2a﹣a2﹣4﹣6a+9;
(3)4(x2﹣5x)﹣5(2x2+3x);
(4)3x2﹣[7x﹣(4x﹣3)﹣2x2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接“五·一”小長(zhǎng)假的購(gòu)物高峰,某運(yùn)動(dòng)品牌服裝專(zhuān)賣(mài)店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種服裝,甲種服裝每件進(jìn)價(jià)l80元,售價(jià)320元;乙種服裝每件進(jìn)價(jià)l50元,售價(jià)280元.
(1)若該專(zhuān)賣(mài)店同時(shí)購(gòu)進(jìn)甲、乙兩種服裝共200件,恰好用去32400元,求購(gòu)進(jìn)甲、乙兩種服裝各多少件?
(2)該專(zhuān)賣(mài)店為使甲、乙兩種服裝共200件的總利潤(rùn)(利潤(rùn)=售價(jià)一進(jìn)價(jià))不少于26700元, 且不超過(guò)26800元,則該專(zhuān)賣(mài)店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專(zhuān)賣(mài)店準(zhǔn)備在5月1日當(dāng)天對(duì)甲種服裝進(jìn)行優(yōu)惠促銷(xiāo)活動(dòng),決定對(duì)甲種服裝每件優(yōu)惠a(0<a<20)元出售,乙種服裝價(jià)格不變.那么該專(zhuān)賣(mài)店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知代數(shù)式A=x2+3xy+x﹣12,B=2x2﹣xy+4y﹣1
(1)當(dāng)x=y=﹣2時(shí),求2A﹣B的值;
(2)若2A﹣B的值與y的取值無(wú)關(guān),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在解決數(shù)學(xué)問(wèn)題的過(guò)程中,我們常用到“分類(lèi)討論”的數(shù)學(xué)思想,下面是運(yùn)用分類(lèi)討論的數(shù)學(xué)思想解決問(wèn)題的過(guò)程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的“探究”.
(提出問(wèn)題)三個(gè)有理數(shù)a,b,c,滿足,求的值.
(解決問(wèn)題).
解:由題意得,a,b,c三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).
①當(dāng)a,b,c都是正數(shù),即,,時(shí),則(備注:一個(gè)非零數(shù)除以它本身等于1,如,則,)
②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),設(shè),,,
則.
(備注:一個(gè)非零數(shù)除以它的相反數(shù)等于-1,如:,則).
所以的值為3或一1.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問(wèn)題:
(1)三個(gè)有理數(shù)a,b,c滿足,求的值;
(2)已知,,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題“若 a>b,則 a2>b2”.
(1)此命題是真命題還是假命題?若是真命題,請(qǐng)給予證明;若是假命題,請(qǐng)舉出一個(gè) 反例.
(2)寫(xiě)出此命題的逆命題,并判斷此逆命題的真假;若是真命題,請(qǐng)給予證明;若是假 命題,請(qǐng)舉出一個(gè)反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投入50萬(wàn)元,開(kāi)發(fā)并生產(chǎn)甲乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查預(yù)計(jì)甲產(chǎn)品的年獲利y1(萬(wàn)元)與投入資金x(萬(wàn)元)成正比例,乙產(chǎn)品的年獲利y2(萬(wàn)元)與投入資金x(萬(wàn)元)的平方成正比例,設(shè)該公司投入乙產(chǎn)品x(萬(wàn)元),兩種產(chǎn)品的年總獲利為y萬(wàn)元(x≥0),得到了表中的數(shù)據(jù).
x(萬(wàn)元) | 20 | 30 |
y(萬(wàn)元) | 10 | 13 |
(1)求y與x的函數(shù)關(guān)系式;
(2)該公司至少可獲得多少利潤(rùn)?請(qǐng)你利用所學(xué)的數(shù)學(xué)知識(shí)對(duì)該公司投入資金的分配提出合理化建
議,使他能獲得最大利潤(rùn),并求出最大利潤(rùn)是多少?
(3)若從年總利潤(rùn)扣除投入乙產(chǎn)品資金的a倍(a≤1)后,剩余利潤(rùn)隨x增大而減小,求a的取值
范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,已知,,,點(diǎn)在邊上,若以為頂點(diǎn)的三角形是等腰三角形,則的長(zhǎng)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com