【題目】如圖,平行四邊形ABCD的頂點A在y軸的正半軸上,坐標(biāo)原點O在邊BC上,AD=6,OA、OB的長分別是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個根.且OA>OB.
(1)求點C、D的坐標(biāo).
(2)求證:射線AO是∠BAC的平分線.
【答案】(1)C(3,0),D(6,4);(2)證明見解析.
【解析】
(1)先利用因式分解法解方程x2﹣7x+12=0得到OA=4,OB=3,再利用平行四邊形的性質(zhì)得AD∥BC,BC=AD=6,則OC=3,從而得到C、D的坐標(biāo);
(2)先證明AO垂直平分BC得到AB=AC,然后根據(jù)等腰三角形的性質(zhì)得到結(jié)論.
(1)∵x2﹣7x+12=0,(x﹣3)(x﹣4)=0,
∴x1=3,x2=4,
∴OA=4,OB=3.
∵四邊形ABCD為平行四邊形,
∴AD∥BC,BC=AD=6,
∴OC=6﹣3=3,
∴D(6,4),C(3,0);
(2)∵OB=OC,AO⊥BC,即AO垂直平分BC,
∴AB=AC,
∴射線AO是∠BAC的平分線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動.如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當(dāng)有一點到達(dá)所在線段的端點時,就停止運動,設(shè)運動的時間為t秒.
(1)用含t的代數(shù)式表示Rt△CPQ的面積S;
(2)當(dāng)t=3秒時,P、Q兩點之間的距離是多少?
(3)當(dāng)t為多少秒時,以點C、P、Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是( 。
A. ac>0
B. 當(dāng)x>1時,y隨x的增大而增大
C. 2a+b=1
D. 方程ax2+bx+c=0有一個根是x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是用鋼絲制作的一個幾何探究工具,其中△ABC內(nèi)接于⊙G,AB是⊙G的直徑,AB=6,AC=2.現(xiàn)將制作的幾何探究工具放在平面直角坐標(biāo)系中(如圖2),然后點A在射線OX上由點O開始向右滑動,點B在射線OY上也隨之向點O滑動(如圖3),當(dāng)點B滑動至與點O重合時運動結(jié)束. 在整個運動過程中,點C運動的路程是( )
A. 4 B. 6 C. 4﹣2 D. 10﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)經(jīng)公司以30元/千克的價格收購一批農(nóng)產(chǎn)品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關(guān)系,經(jīng)過市場調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:
銷售價格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)請你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定p與x之間的函數(shù)表達(dá)式;
(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價格,才能使日銷售利潤最大?
(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出a元(a>0)的相關(guān)費用,當(dāng)40≤x≤45時,農(nóng)經(jīng)公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤﹣日支出費用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|x+b|(b為常數(shù))的圖象
(1)當(dāng)b=0時,在同一直角坐標(biāo)系中分別畫出函數(shù)與y=|x+b|的圖象,并利用這兩個圖象回答:x取什么值時,比|x|大?
(2)若函數(shù)y=|x+b|(b為常數(shù))的圖象在直線y=1下方的點的橫坐標(biāo)x滿足0<x<3,直接寫出b的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(1,y1)、B(﹣2,y2)是雙曲線y=上兩點,且y1+y2=1.
(1)求雙曲線y=的解析式;
(2)若點C的坐標(biāo)為(0,﹣1)時,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com