【題目】近年來,越來越多的人們加入到全民健身的熱潮中來.“健步走作為一項行走速度和運動量介于散步和競走之間的步行運動,因其不易發(fā)生運動傷害,不受年齡、時間和場地限制的優(yōu)點而受到人們的喜愛.隨著信息技術(shù)的發(fā)展,很多手機可以記錄人們每天健步走的步數(shù),為大家的健身做好記錄.

小明的爸爸媽媽都是健步走愛好者,一般情況下,他們每天都會堅持健步走.小明為了給爸爸媽媽頒發(fā)4月份的運動達人獎?wù),進行了抽樣調(diào)查,過程如下,請補充完整.

4月份隨機抽取10天,記錄爸爸媽媽運動步數(shù)(千步)如下:

爸爸12 10 11 15 14 13 14 11 14 12

媽媽11 14 15 2 11 11 14 15 14 14

根據(jù)以上信息,整理分析數(shù)據(jù)如下表所示:

平均數(shù)

中位數(shù)

眾數(shù)

爸爸

12.6

12.5

媽媽

14

14

1)直接在下面空白處寫出表格中,的值;

2)你認為小明會把4月份的運動達人獎?wù)骂C發(fā)給誰,并說明理由.

【答案】(1);(2)詳見解析.

【解析】

1)根據(jù)平均數(shù)、眾數(shù)的定義分別求出a,b的值;

2)根據(jù)平均數(shù)與中位數(shù)的意義說明即可.

解:(1)由題意,可得a=(11+14+15+2+11+11+14+15+14+14)÷10=12.1,

10個數(shù)據(jù)中,14出現(xiàn)了3次,次數(shù)最多,所以b=14;

;

(2)答案不唯一,理由須支撐推斷結(jié)論.

例如:我認為小明會把4月份的運動達人獎?wù)骂C發(fā)給爸爸,因為從平均數(shù)的角度看,爸爸每天的平均運動步數(shù)比媽媽多.

我認為小明會把4月份的運動達人獎?wù)骂C發(fā)給媽媽,因為從中位數(shù)的角度看,媽媽有超過5天的運動步數(shù)達到或超過了14千步,而爸爸沒有,媽媽平均步數(shù)低于爸爸完全是受一個極端值的影響造成的,考慮到這一極端值很可能是由于某種特殊原因(例如生病等)造成的,可以排除此干擾.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,老師提出一個問題用直尺和圓規(guī)作以AB為底的等腰直角三角形ABC”.

小美的作法如下:

①分別以點AB為圓心,大于AB作弧,交于點M,N

②作直線MN,交AB于點O;

③以點O為圓心,OA為半徑,作半圓,交直線MN于點C;

④連結(jié)ACBC

所以,ABC即為所求作的等腰直角三角形

請根據(jù)小美的作法,用直尺和圓規(guī)作以AB為底的等腰直角三角形ABC,并保留作圖痕跡.這種作法的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,把一張矩形紙片ABCD沿對角線BD折疊,將重合部分(△BFD)剪去,得到△ABF和△EDF.

(1)求證:FB=FD;

(2)求證:△ABF≌△EDF;

(3)將△ABF與△EDF不重合地拼在一起,可拼成特殊三角形和特殊四邊形,請你按照下列要求將拼圖補畫完整(圖2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點DAB邊上的一點,

(1)試說明:∠EAC=∠B ;

(2)若AD=15,BD=36,求DE的長.

(3)若點DA、B之間移動,當點D為 時,ACDE互相平分.

(直接寫出答案,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,邊上一點,將沿翻折,點落在點處,當為直角三角形時,________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,EBC的中點,連接DE并延長,交AB的延長線于點F,ABBF,添加一個條件,使四邊形ABCD是平行四邊形.下列條件中正確的是(  )

A.ADBCB.CDBFC.F=∠CDED.A=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在數(shù)軸上A、B兩點對應(yīng)的數(shù)分別是6、﹣6,∠DCE90°CO重合,D點在數(shù)軸的正半軸上).

1)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t0t3)個單位后,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCFα

①當t1時,求α的度數(shù);

②猜想∠BCEα的數(shù)量關(guān)系,并證明;

2)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸的正半軸向右平移t0t3)個單位,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCFα,與此同時,將∠D1C1E1沿數(shù)軸的負半軸向左平移t0t3)個單位,再繞點頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1β,若αβ滿足,求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列語句,畫出圖形.

(1)如圖1,已知四點.

①畫直線;

②連接線段,相交于點;

③畫射線,相交于點

(2)如圖2,有一個燈塔分別位于海島的南偏西30°和海島的南偏西60°的方向上,通過畫圖可推斷燈塔的位置可能是四點中的____點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(

A. 10°B. 15°C. 20°D. 25°

查看答案和解析>>

同步練習冊答案