【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)的圖象與y軸交于C點,與x軸交于A、B兩點(A點在B點右側),一次函數(shù)的圖象經(jīng)過A、C兩點,已知.

(1)求該二次函數(shù)和一次函數(shù)的解析式

(2)連接BC,求ABC的面積

【答案】(1) ; (2)3.

【解析】

(1)由二次函數(shù)y=x2+bx2的解析式可求出和y軸交點的坐標即點C的坐標,由已知條件求出OA的長度進而求出點A的坐標,把A,C的坐標分別代入即可求出二次函數(shù)和一次函數(shù)的解析式;

(2)令y=0,求出B點的坐標即OB的長度,所以AB的長度可以求出,又因為AB上的高為OC,利用面積公式即可求出ABC的面積.

(1)在y=x2+bx2中,

x=0,得y=-2,

C(0,-2),

OC=2,

RtAOC中,OA==4,

A(4,0).

y=x2+bx2A(4,0),

0=×42+b×42,

b=,

y=x2+x2.

y=mx+n(m≠0)過A(4,0)、C(0,-2),

,

y=x-2;

(2)在y=x2+x2中,

y=0,得x1=1,x2=4,

B(1,0),

OB=1,

AB=OA-OB=3,

SABC=×ABOC=×3×2=3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,n次移動到An.則△OA6A2020的面積是(

A.505B.504.5C.505.5D.1010

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點A的坐標為(3,a)(其中a>4),射線OA與反比例函數(shù)y=的圖象交于點P,點B、C分別在函數(shù)y=的圖象上,且ABx軸,ACy軸;

(1)當點P橫坐標為2,求直線AO的表達式;

(2)連接CO,當AC=CO時,求點A坐標;

(3)連接BP、CP,試猜想:的值是否隨a的變化而變化?如果不變,求出的值;如果變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了調(diào)查甲,乙兩臺包裝機分裝標準質(zhì)量為奶粉的情況,質(zhì)檢員進行了抽樣調(diào)查,過程如下.請補全表一、表二中的空,并回答提出的問題.

收集數(shù)據(jù):

從甲、乙包裝機分裝的奶粉中各自隨機抽取10袋,測得實際質(zhì)量(單位:)如下:

甲:394,400,408,406,410,409400,400,393395

乙:402,404,396,403,402,405,397,399,402,398

整理數(shù)據(jù):

表一

頻數(shù)種類

質(zhì)量(

____________

0

0

3

3

1

0

____________

____________

1

3

0

分析數(shù)據(jù):

表二

種類

平均數(shù)

401.5

400.8

中位數(shù)

____________

402

眾數(shù)

400

____________

方差

36.85

8.56

得出結論:

包裝機分裝情況比較好的是______(填甲或乙),說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC和正方形CDEF在平面直角坐標系中,點OC,Fy軸上,點O為坐標原點,點MOC的中點,拋物線y=ax2+b經(jīng)過M,B,E三點,則的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.

(1)求拋物線的解析式.

(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.

移動開始后第t秒時,設PBQ的面積為S,試寫出S與t之間的函數(shù)關系式,并寫出t的取值范圍.

當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究

1)請在圖①中作出兩條直線,使它們將圓面四等分;

2)如圖②,是正方形內(nèi)一定點,請在圖②中作出兩條直線(要求其中一條直線必須過點),使它們將正方形的面積四等分:

問題解決

3)如圖③,在四邊形中,,點的中點如果,且,那么在邊上足否存在一點,使所在直線將四邊形的面積分成相等的兩部分?若存在,求出的長:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合探究:觀察發(fā)現(xiàn):

,

,

,

,

建立模型:形如的化簡(其中,為正整數(shù)),只要我們找到兩個正整數(shù),),使,那么.問題解決:

(1)根據(jù)觀察證明“建立模型”的結論是正確的;

2)化簡:① ;

;

3)已知一個長方形的長為,寬為,若某正方形的面積與該長方形的面積相等,設正方形邊長為,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學對本校500名畢業(yè)生中考體育加試測試情況進行調(diào)查,根據(jù)男生1 000m及女生800m測試成績整理、繪制成如下不完整的統(tǒng)計圖(圖①、圖②),請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:

(1)該校畢業(yè)生中男生有________人,女生有________人;

(2)扇形統(tǒng)計圖中a=________,b=________;

(3)補全條形統(tǒng)計圖(不必寫出計算過程).

查看答案和解析>>

同步練習冊答案