【題目】在平面直角坐標(biāo)系xOy中,四邊形OABC為矩形,OA在x軸正半軸上,OC在y軸正半軸上,且A(10,0)、C(0,8)

(1)如圖1,在矩形OABC的邊AB上取一點(diǎn)E,連接OE,將△AOE沿OE折疊,使點(diǎn)A恰好落在BC邊上的F處,求AE的長(zhǎng);

(2)將矩形OABC的AB邊沿x軸負(fù)方向平移至MN(其它邊保持不變),M、N分別在邊OA、CB上且滿足CN=OM=OC=MN.如圖2,P、Q分別為OM、MN上一點(diǎn).若∠PCQ=45°,求證:PQ=OP+NQ;

(3)如圖3,S、G、R、H分別為OC、OM、MN、NC上一點(diǎn),SR、HG交于點(diǎn)D.若∠SDG=135°,HG=4,求RS的長(zhǎng).

【答案】(1)AE=5;(2)見(jiàn)解析;(3).

【解析】

1)設(shè),在中,根據(jù)勾股定理列方程解出即可;
2)作輔助線,構(gòu)建兩個(gè)三角形全等,證明,由,得出結(jié)論;
3)作輔助線,構(gòu)建平行四邊形和全等三角形,可得,則,證明,得,設(shè),在中,根據(jù)勾股定理列方程求出EN的長(zhǎng),再利用勾股定理求CE,則SRCE相等,即可得出結(jié)論.

1)如圖1,由題意得:,

設(shè),則,

中,

,

,

由勾股定理得:,

解得:,

;

2)如圖2,在PO的延長(zhǎng)線上取一點(diǎn)E',使

,

∴四邊形OMNC是正方形,

,

,

,

,

,

,

,

,

,

;

②如圖3,過(guò)C,在x軸負(fù)半軸上取一點(diǎn)E′,使,得,

,則,

過(guò)COMF,連接FE,得,則

,

,

,

,

,

,

,

中,,

根據(jù)勾股定理得:,

,

設(shè),則,,

解得:,

,

根據(jù)勾股定理得:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AECD于點(diǎn)F,連接DE

1)求證:△DEC≌△EDA;

2)求DF的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖1,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)軸的正半軸上,點(diǎn)的坐標(biāo)為,四邊形是菱形,直線于點(diǎn),交軸于點(diǎn),連接

1)點(diǎn)的坐標(biāo)是______;

2)求直線的函數(shù)解析式;

3)如圖2,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線方向以1個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)勻速運(yùn)動(dòng),設(shè)的面積為),點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,求之間的函數(shù)關(guān)系式(要求寫出自變量的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形

1)如圖,點(diǎn)延長(zhǎng)線上,,求證:點(diǎn)中點(diǎn).

2)如圖,點(diǎn)中點(diǎn),延長(zhǎng)線上一點(diǎn),且,求證:

3)在(2)的條件下,若的延長(zhǎng)線與交于點(diǎn),試判斷四邊形是否為平行四邊形?并證明你的結(jié)論(先補(bǔ)全圖形再解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試中,某班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)圖如圖.下列說(shuō)法錯(cuò)誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總?cè)藬?shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OFMON的平分線,點(diǎn)A在射線OM上,P,Q是直線ON上的兩動(dòng)點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OFON交于點(diǎn)B、點(diǎn)C,連接AB、PB

1)如圖1,當(dāng)PQ兩點(diǎn)都在射線ON上時(shí),請(qǐng)直接寫出線段ABPB的數(shù)量關(guān)系;

2)如圖2,當(dāng)P、Q兩點(diǎn)都在射線ON的反向延長(zhǎng)線上時(shí),線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請(qǐng)寫出證明過(guò)程;若不存在,請(qǐng)說(shuō)明理由;

3)如圖3,MON=60°,連接AP,設(shè)=k,當(dāng)PQ兩點(diǎn)都在射線ON上移動(dòng)時(shí),k是否存在最小值?若存在,請(qǐng)直接寫出k的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】敘述并證明三角形內(nèi)角和定理.

三角形內(nèi)角和定理: ;

已知:如圖ABC.

求證: .

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF

1)求AEBE的長(zhǎng);

2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;

3)如圖,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(<α<180°),記旋轉(zhuǎn)中的△ABF△A′BF′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y= ax+bxc,自變量x 與函數(shù)y 的對(duì)應(yīng)值如表:

x

...

5

4

3

2

1

0

...

y

...

4

0

2

2

0

4

...

下列說(shuō)法正確的是(

A. 拋物線的開(kāi)口向下 B. 當(dāng)x>-3時(shí),yx的增大而增大

C. 二次函數(shù)的最小值是-2 D. 拋物線的對(duì)稱軸是x=-5/2

查看答案和解析>>

同步練習(xí)冊(cè)答案