【答案】
分析:(1)先根據(jù)直線的解析式求出A點(diǎn)的坐標(biāo),然后將A點(diǎn)坐標(biāo)代入雙曲線的解析式中即可求出k的值;
(2)由(1)得出的雙曲線的解析式,可求出C點(diǎn)的坐標(biāo),由于△AOC的面積無法直接求出,因此可通過作輔助線,通過其他圖形面積的和差關(guān)系來求得.(解法不唯一);
(3)由于雙曲線是關(guān)于原點(diǎn)的中心對稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即6.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后參照(2)的三角形面積的求法表示出△POA的面積,由于△POA的面積為6,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).
解答:解:(1)∵點(diǎn)A橫坐標(biāo)為4,
把x=4代入y=
x中
得y=2,
∴A(4,2),
∵點(diǎn)A是直線y=
x與雙曲線y=
(k>0)的交點(diǎn),
∴k=4×2=8;
(2)解法一:如圖,
∵點(diǎn)C在雙曲線上,
當(dāng)y=8時(shí),x=1,
∴點(diǎn)C的坐標(biāo)為(1,8).
過點(diǎn)A、C分別做x軸、y軸的垂線,垂足為M、N,得矩形DMON.
∵S
矩形ONDM=32,S
△ONC=4,S
△CDA=9,S
△OAM=4.
∴S
△AOC=S
矩形ONDM-S
△ONC-S
△CDA-S
△OAM=32-4-9-4=15;
解法二:如圖,
過點(diǎn)C、A分別做x軸的垂線,垂足為E、F,
∵點(diǎn)C在雙曲線
上,
當(dāng)y=8時(shí),x=1,
∴點(diǎn)C的坐標(biāo)為(1,8).
∵點(diǎn)C、A都在雙曲線
上,
∴S
△COE=S
△AOF=4,
∴S
△COE+S
梯形CEFA=S
△COA+S
△AOF.
∴S
△COA=S
梯形CEFA.
∵S
梯形CEFA=
×(2+8)×3=15,
∴S
△COA=15;
(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對稱圖形,
∴OP=OQ,OA=OB,
∴四邊形APBQ是平行四邊形,
∴S
△POA=S
平行四邊形APBQ×=
×24=6,
設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),
得P(m,
),
過點(diǎn)P、A分別做x軸的垂線,垂足為E、F,
∵點(diǎn)P、A在雙曲線上,
∴S
△POE=S
△AOF=4,
若0<m<4,如圖,
∵S
△POE+S
梯形PEFA=S
△POA+S
△AOF,
∴S
梯形PEFA=S
△POA=6.
∴
(2+
)•(4-m)=6.
∴m
1=2,m
2=-8(舍去),
∴P(2,4);
若m>4,如圖,
∵S
△AOF+S
梯形AFEP=S
△AOP+S
△POE,
∴S
梯形PEFA=S
△POA=6.
∴
(2+
)•(m-4)=6,
解得m
1=8,m
2=-2(舍去),
∴P(8,1).
∴點(diǎn)P的坐標(biāo)是P(2,4)或P(8,1).
點(diǎn)評:本題考查反比例解析式的確定和性質(zhì)、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問題的能力.難點(diǎn)是不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差來求解.