【題目】如圖,在正方形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC上的一點(diǎn),且BF=3CF,連接AE、AF、EF,下列結(jié)論:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2=ADAF,④S△AEF=5S△ECF,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
】設(shè)正方形的邊長(zhǎng)為4a,根據(jù)題意用a表示出FC,BF,CE,DE,根據(jù)相似三角形的判定定理,勾股定理,正切的定義,相似三角形的性質(zhì)定理判斷即可.
設(shè)正方形的邊長(zhǎng)為4a,
則FC=a,BF=3a,CE=DE=2a,
∴=2,=2,
∴,又∠D=∠C,
∴△ADE∽△ECF,①正確;
由勾股定理得,EF=,AE=,
AF=,
tan∠DAE=,tan∠EAF=,
∴∠DAE=∠EAF,②正確;
AE2=(2a)2=20a2,ADAF=4a5a=20a2,
∴AE2=ADAF,③正確;
∵AE2=ADAF,
∴,又∠DAE=∠EAF,
∴△ADE∽△AEF,
∴△ECF∽△AEF,
∴=5,
∴S△AEF=5S△ECF,⑤正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃一次性購買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購買2個(gè)排球和3個(gè)籃球共需340元.
(1)求每個(gè)排球和籃球的價(jià)格:
(2)若該校一次性購買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購買時(shí),費(fèi)用最低?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四川省蘆山縣4月20日發(fā)生了7.0級(jí)強(qiáng)烈地震,政府為了盡快搭建板房安置災(zāi)民,給某廠下達(dá)了生產(chǎn)A種板材48000m2和B種板材24000m2的任務(wù).
⑴如果該廠安排280人生產(chǎn)這兩種板材,每人每天能生產(chǎn)A種板材60 m2或B種板材40 m2,請(qǐng)問:應(yīng)分別安排多少人生產(chǎn)A種板材和B種板材,才能確保同時(shí)完成各自的生產(chǎn)任務(wù)?
⑵某災(zāi)民安置點(diǎn)計(jì)劃用該廠生產(chǎn)的兩種板材搭建甲、乙兩種規(guī)格的板房共400間,已知建設(shè)一間甲型板房和一間乙型板房所需板材及安置人數(shù)如下表所示:
板房 | A種板材(m2) | B種板材(m2) | 安置人數(shù) |
甲型 | 110 | 61 | 12 |
乙型 | 160 | 53 | 10 |
①共有多少種建房方案可供選擇?
②若這個(gè)災(zāi)民安置點(diǎn)有4700名災(zāi)民需要安置,這400間板房能否滿足需要?若不能滿足請(qǐng)說明理由;若能滿足,請(qǐng)說明應(yīng)選擇什么方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC 頂點(diǎn) A(2,3).若以原點(diǎn) O 為位似中心,畫三角形 ABC
的位似圖形△A′B′C′,使△ABC 與△A′B′C′的相似比為,則 A′的坐標(biāo)為( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長(zhǎng)為6的等邊△ABC中,點(diǎn)D、E分別在AC、BC邊上,DE∥AB,EC=2.
(1)如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線交于點(diǎn)N,當(dāng)CC′多大時(shí),四邊形MCND′為菱形?并說明理由.
(2)如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′、BE′.邊D′E′的中點(diǎn)為P.
①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;
②連接AP,當(dāng)AP最大時(shí),求AD′的值.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià)x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB為⊙O直徑,PQ與⊙O交于點(diǎn)C,AD⊥PQ于點(diǎn)D,且AC為∠DAB的平分線,BE⊥PQ于點(diǎn)E.
(1)求證:PQ與⊙O相切;
(2)求證:點(diǎn)C是DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在湖邊高出水面40m的山頂A處看見一架無人機(jī)停留在湖面上空某處,觀察到無人機(jī)底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°,則無人機(jī)底部P距離湖面的高度是( 。
A. (40+40)mB. (40+80)mC. (50+100)mD. (50+50)m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com