=1,求x.若=-1,求x.

答案:
解析:

x>0 x<0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為

點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直

線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(浙江臺州卷)數(shù)學(xué) 題型:解答題

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為
點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(福建廈門卷)數(shù)學(xué)(帶解析) 題型:解答題

已知點A(1,c)和點B (3,d )是直線y=k1x+b與雙曲線y=(k2>0)的交
點.
(1)過點A作AM⊥x軸,垂足為M,連結(jié)BM.若AM=BM,求點B的坐標(biāo);
(2)設(shè)點P在線段AB上,過點P作PE⊥x軸,垂足為E,并交雙曲線y=(k2>0)于點N.當(dāng)  取最大值時,若PN= ,求此時雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆浙江省臺州市八校聯(lián)誼七年級下學(xué)期期中測試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知射線CB∥OA,∠C=∠OAB=140°,E、F在CB上,且滿足OB平分∠AOF,OE平分∠COF

1.求∠EOB的度數(shù)。

2.若平行移動AB,那么∠OBC︰∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個值。

3.在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,請求出∠OEC和∠OBA的度數(shù);若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題

(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點A,它的頂點為

點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直

線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對稱軸上是否存在點P,使得△PBD是一個等腰三角形?若存在,請直接寫出點P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案