如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
【考點】相似三角形的判定與性質(zhì);正方形的性質(zhì).
【分析】(1)由正方形的性質(zhì)得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;
(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.
【解答】(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠B=90°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=90°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)解:∵∠B=90°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中點,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,
即,
∴AE=16.9,
∴DE=AE﹣AD=4.9.
【點評】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理;熟練掌握正方形的性質(zhì),并能進(jìn)行推理計算是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)下表判斷方程x2+x﹣3=0的一個根的近似值(精確到0.1)是( )
x | 1.2 | 1.3 | 1.4 | 1.5 |
x2+x﹣3 | ﹣0.36 | ﹣0.01 | 0.36 | 0.75 |
A.1.3 B.1.2 C.1.5 D.1.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
李大叔去年承包了10畝地種植甲、乙兩種蔬菜,共獲利18000元,其中甲種蔬菜每畝獲利2000元,乙種蔬菜每畝獲利1500元,李大叔去年甲、乙兩種蔬菜各種植了多少畝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=﹣x+6,交x軸、y軸于A、B兩點,拋物線y=x2+mx+n經(jīng)過A點,且與直線y=﹣x+6交于另一點P.
(1)若P與B點重合,求拋物線的解析式;
(2)若P在第一象限,過PE⊥x軸于E點,PF⊥y軸于F點,當(dāng)四邊形PEOF面積為5,求拋物線的解析式;
(3)若△OAP為等腰三角形,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com