【題目】如圖,在菱形中,,分別是邊的中點,于點,則

A. B. C. D.

【答案】D

【解析】

延長PFAB的延長線于點G.根據(jù)已知可得∠B,∠BEF,∠BFE的度數(shù),再根據(jù)余角的性質(zhì)可得到∠EPF的度數(shù),從而求得∠FPC的度數(shù).

如圖所示:延長PFAB的延長線于點G.


在△BGF與△CPF中,

∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F為PG中點.
又∵由題可知,∠BEP=90°,
∴EF=PG(直角三角形斜邊上的中線等于斜邊的一半),
∵PF=PG(中點定義),
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP-∠FEP=∠EPC-∠EPF,即∠BEF=∠FPC,
∵四邊形ABCD為菱形,
∴AB=BC,∠ABC=180°-∠A=70°,
∵E,F(xiàn)分別為AB,BC的中點,
∴BE=BF,∠BEF=∠BFE=(180°-70°)=55°,
易證FE=FG,
∴∠FGE=∠FEG=55°,
∵AG∥CD,
∴∠FPC=∠EGF=55°
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△DEF的頂點在等邊△ABC的邊上.

1)求證:BECD;

2)若BD2CD,求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點DBC上,△ADE是等腰三角形,AD AE ,∠DAE 100°,當(dāng)DEAC時,求∠BAD和∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,相交于點平分于點,若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點、分別在、、上,且,

如果,那么四邊形________形;

如果的角平分線,那么四邊形________形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AM,CN分別是∠BAD和∠BCD的平分線,添加一個條件,仍無法判斷四邊形AMCN為菱形的是(

A.AM=AN B.MN⊥AC

C.MN是∠AMC的平分線 D.∠BAD=120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形的對角線交于點,把邊分別繞點、同時逆時針旋轉(zhuǎn)得四邊形,其對角線交點為,連接.下列結(jié)論:

四邊形為菱形;

線段的長為;

運(yùn)動到點的路徑是線段.其中正確的結(jié)論共有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)先化簡,再求值:(ab)2b(3ab)a2,其中a2,b6;

(2) 已知2a23a60,求代數(shù)式3a(2a1)(2a1)(2a1)的值.

查看答案和解析>>

同步練習(xí)冊答案