【題目】如圖,在中, ,將繞點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)得到

1)線段的長(zhǎng)是 , 的度數(shù)是 ;

2)連結(jié),求證:四邊形是平行四邊形;

3)求四邊形的面積.

【答案】16, 135;(2詳見解析;336.

【解析】試題分析:(1)圖形在旋轉(zhuǎn)過程中,邊長(zhǎng)和角的度數(shù)不變;

(2)可證明OA∥A1B1且相等,即可證明四邊形OAA1B1是平行四邊形;

(3)利用弧長(zhǎng)公式求得點(diǎn)B劃過的弧長(zhǎng)即可.

試題解析:(1)解:因?yàn),?/span>OAB=90°,OA=AB,

所以,△OAB為等腰直角三角形,即∠AOB=45°

根據(jù)旋轉(zhuǎn)的性質(zhì),對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,即OA1=OA=6,

對(duì)應(yīng)角∠A1OB1=AOB=45°,旋轉(zhuǎn)角∠AOA1=90°,

所以,∠AOB1的度數(shù)是90°+45°=135°

2)證明:∵∠AOA1=OA1B1=90°

OAA1B1,

OA=AB=A1B1,

∴四邊形OAA1B1是平行四邊形.

336

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).

,求線段MN的長(zhǎng);

C為線段AB上任一點(diǎn),滿足,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說明理由,你能用一句簡(jiǎn)潔的話描述你發(fā)現(xiàn)的結(jié)論嗎?

C在線段AB的延長(zhǎng)線上,且滿足cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)把數(shù)軸補(bǔ)充完整.

2)在數(shù)軸上表示下列各數(shù).

3)用連接起來.   

4)﹣|2|與﹣4之間的距離是   

3,﹣4,﹣(﹣1.5),﹣|2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是中國(guó)電信兩種套餐計(jì)費(fèi)方式.(月基本費(fèi)固定收,主叫不超過主叫時(shí)間,流量不超上網(wǎng)流量不再收取額外費(fèi)用費(fèi),主叫超時(shí)和上網(wǎng)超流量部分加收超時(shí)費(fèi)和超流量費(fèi))

月基本費(fèi)/

主叫通話/分鐘

上網(wǎng)流量/MB

接聽

主叫超時(shí)(元/分鐘)

超出流量(元/MB

套餐1

49

200

500

免費(fèi)

0.20

0.3

套餐2

69

250

600

免費(fèi)

0.15

0.2

16月小王主叫通話時(shí)間220分鐘,上網(wǎng)流量800MB.按套餐1計(jì)費(fèi)需 元,按套餐2計(jì)費(fèi)需 元;

若他按套餐2計(jì)費(fèi)需129元,主叫通話時(shí)間為240分鐘,則他上網(wǎng)使用了 MB流量;

2)若上網(wǎng)流量為540MB,是否存在某主叫通話時(shí)間(分鐘),按套餐1和套餐2的計(jì)費(fèi)相等?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是正方形,MAB延長(zhǎng)線上一點(diǎn).直角三角尺的一條直角邊經(jīng)過點(diǎn)D,且直角頂點(diǎn)EAB邊上滑動(dòng)(點(diǎn)E不與點(diǎn)AB重合),另一直角邊與∠CBM的平分線BF相交于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)EAB邊得中點(diǎn)位置時(shí):

通過測(cè)量DE、EF的長(zhǎng)度,猜想DEEF滿足的數(shù)量關(guān)系是

連接點(diǎn)EAD邊的中點(diǎn)N,猜想NEBF滿足的數(shù)量關(guān)系是 ,請(qǐng)證明你的猜想.

2)如圖2,當(dāng)點(diǎn)EAB邊上的任意位置時(shí),猜想此時(shí)DEEF有怎樣的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老漢為了與顧客簽訂購(gòu)銷合同,對(duì)自己魚塘中魚的總質(zhì)量進(jìn)行了估計(jì),第一次撈出100條,稱得質(zhì)量為184千克.并將每條魚做上記號(hào)后放入水中,當(dāng)它們完全混合于魚群后,又撈出200條,稱得質(zhì)量為416千克,且?guī)в杏浱?hào)的魚有20條,王老漢的魚塘中估計(jì)有魚多少條魚?總質(zhì)量為多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=2,AMBN是它的兩條切線,CD與⊙O相切于點(diǎn)E,與BNAM交于點(diǎn)C、D,設(shè)AD=x,BC=y

(1)求證:AMBN。

(2)y關(guān)于x的函數(shù)關(guān)系式。

3)若x、y是關(guān)于t的方程2t-5t+m=0的兩根,且xy=,求xy的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-2mx+m2-1

1當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O0,0時(shí),求二次函數(shù)的解析式;

2如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);

32的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.

(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;

(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)

查看答案和解析>>

同步練習(xí)冊(cè)答案