【題目】如圖,在△ABC中,AB=AC,E在線段AC上,D在AB的延長線,連DE交BC于F,過點E作EG⊥BC于G.
(1)若∠A=50°,∠D=30°,求∠GEF的度數(shù);
(2)若BD=CE,求證:FG=BF+CG.
【答案】(1)55°;(2)見解析
【解析】
(1)根據(jù)等腰三角形兩底角相等及三角形內(nèi)角和定理求出∠C,再根據(jù)直角三角形兩銳角互余求出∠CEG,然后根據(jù)三角形的外角的性質(zhì)求出∠CEF,即可得到結(jié)論;
(2)過點E作EH∥AB交BC于H,根據(jù)平行線的性質(zhì)可得∠ABC=∠EHC,∠D=∠FEH,然后求出∠EHC=∠C,再根據(jù)等角對等邊可得EC=EH,得出BD=EH,再利用“角角邊”證明△BDF和△HEF全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=FH,根據(jù)等腰三角形三線合一的性質(zhì)可得CG=HG,即可得到結(jié)論.
(1)∵∠A=50°,∴∠C(180°﹣∠A)(180°﹣50°)=65°.
∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°.
∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;
(2)過點E作EH∥AB交BC于H,則∠ABC=∠EHC,∠D=∠FEH.
∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH.
∵BD=CE,∴BD=EH.
在△BDF和△HEF中,∵,∴△BDF≌△HEF(AAS),∴BF=FH.
又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明遇到一個問題:在中,,,三邊的長分別為、、,求的面積.
小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法.
參考小明解決問題的方法,完成下列問題:
()圖是一個的正方形網(wǎng)格(每個小正方形的邊長為) .
①利用構(gòu)圖法在答卷的圖中畫出三邊長分別為、、的格點.
②計算①中的面積為__________.(直接寫出答案)
()如圖,已知,以,為邊向外作正方形,,連接.
①判斷與面積之間的關(guān)系,并說明理由.
②若,,,直接寫出六邊形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使點C與點A重合,折痕EF分別與AB、DC交于點E和點F.
(1)證明:△ADF≌△AB′E;
(2)若AD=12,DC=18,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.則點C到AB的距離是( )
A.B.C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在等邊的邊上,,射線于點,點是射線上一動點,點是線段上一動點,當(dāng)的值最小時,,則為( )
A. 14B. 13C. 12D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(﹣2,5),并且與y軸交于點P,直線y=x+3與y軸交于點Q,點Q恰與點P關(guān)于x軸對稱,求這個一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當(dāng)△CEB′為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為,點的坐標(biāo)為,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點;按此做法進行下去,其中的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是一片水田,某村民小組需計算其面積,測得如下數(shù)據(jù):∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.請你計算出這片水田的面積.(參考數(shù)據(jù):sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com