(1)“三等分角”是數(shù)學史上一個著名問題,但數(shù)學家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”,但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的,如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分,仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°);(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)
(2)數(shù)學家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R, 分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB,要明白帕普斯的方法,請研究以下問題:
①設、,求直線OM對應的函數(shù)關系式(用含a、b的代數(shù)式表示);
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q,請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB。
解:(1),
我們在邊ON上取一點A,用尺規(guī)以OA為一邊向∠MON的外部作等邊△OAB,用尺規(guī)作出∠AOB的角平分線OC,再用尺規(guī)作出∠CON的角平分線OD,則射線OD、OC將∠MON三等分;
(2)①因為P(a,),R(b,)且是分別過點P和R作x軸和y軸的平行線;
所以M(b,
設OM的函數(shù)表達式為y=kx,
,
所以y=
②因為P(a,1/a),R(b,1/b)且是分別過點P和R作x軸和y軸的平行線
所以Q(a,1/b)
因為Q在OM上,
所以把Q(a,y)代入y=x/ab,y=1/b
因為1/b=1/b,
所以Q在OM上易證得四邊形PQRM為矩形
所以PS=RS=OS=MS
所以∠SQR=∠SRQ,
因為∠PSQ為△SQR外角
所以∠PSQ=2∠SQR,
因為QR平行于x軸,
所以∠SQR=∠SOH
因為PR=2PO,
所以PO=PS
所以∠PSQ=∠POS,
所以∠POS=2∠SQR
所以∠POS=2∠SOH,
所以∠MOB=∠AOB。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

“三等分角”是數(shù)學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數(shù)表達式(用含a,b的代數(shù)式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明精英家教網(wǎng)∠MOB=
1
3
∠AOB;
(3)應用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)“三等分角”是數(shù)學史上一個著名問題,但數(shù)學家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數(shù)關系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三等分任意角是三大幾何作圖不能問題之一,古希臘數(shù)學家阿基米德就設計出了一個巧妙的三等分角的方法:在直尺邊緣上添加一點P,命尺端為O(如圖①);設所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點;移動直尺,使直尺上的O點在AC的延長線上移動,P點在圓周上移動,當直尺正好通過B點時,連OPB,則有∠AOB=
13
∠MCN.這種方法由于在直尺上作了一個記號,不符合尺規(guī)作圖中直尺只能用來連線的規(guī)定,因此還不能算是嚴格意義上的尺規(guī)作圖.
(1)動手實踐操作,用以上方法三等分∠MCN,在圖②中畫出圖形并標明相應字母;
(2)請你就阿基米德的作圖方法給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

尺規(guī)作圖,保留作圖痕跡,不用寫出作法,但要寫出結(jié)論:
(1)如圖,已知線段a,請以a為邊作一個等邊三角形;
(2)三等分角是古希臘三大幾何問題之一,如今數(shù)學上已證實了在尺規(guī)作圖的前提下,此題無解.但有些特殊角度是可以實現(xiàn)尺規(guī)作圖三等分的,比如三等分直角.如圖,已知∠AOB=90°,請試用第(1)小題中的知識將其三等分.

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《反比例函數(shù)》中考題集(26):1.3 反比例函數(shù)的應用(解析版) 題型:解答題

“三等分角”是數(shù)學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(a,)、R(b,),求直線OM對應的函數(shù)表達式(用含a,b的代數(shù)式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

同步練習冊答案