(2007•濟(jì)寧)某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為x m,短邊為y m,工程總造價(jià)為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數(shù)關(guān)系式;
(3)寫出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

【答案】分析:本題是用函數(shù)解決實(shí)際中的面積問(wèn)題,造價(jià)問(wèn)題,根據(jù)題意可以列出y與x的一次函數(shù)關(guān)系,工程造價(jià)w與x二次函數(shù)關(guān)系,再利用二次函數(shù)解決實(shí)際問(wèn)題.
(1)由等量關(guān)系“活動(dòng)區(qū)出口的寬度+綠化區(qū)的長(zhǎng)的2倍=空地的長(zhǎng)”用x將寬度表示出來(lái),再根據(jù)寬度的范圍求得x的取值范圍;
(2)由四周出口一樣寬可得“空地的長(zhǎng)-綠化區(qū)的長(zhǎng)的2倍=空地的寬-綠化區(qū)的寬的2倍”列出函數(shù)關(guān)系式;
(3)由等量關(guān)系“總造價(jià)=綠化區(qū)的造價(jià)+活動(dòng)區(qū)的造價(jià)”列出函數(shù)關(guān)系式;
(4)將投資總額w代入函數(shù)關(guān)系式求值,分析工程方案.
解答:解:(1)∵50≤100-2x≤60,
∴20≤x≤25;

(2)由于四周出口一樣寬,100-2x=80-2y,即:y=x-10;

(3)w=4xy×50+(100×80-4xy)×60
=480000-40xy
=480000-40x(x-10)
∴w=-40x2+400x+480000;

(4)當(dāng)w=469000時(shí)
-40x2+400x+480000=469000
即x2-10x-275=0解得x1=5+10,x2=5-10
∵x>0
∴x=5+10≈22.32
因?yàn)閤增大,綠化區(qū)面積會(huì)增大,從而活動(dòng)區(qū)面積會(huì)減小,工程總造價(jià)會(huì)降低,
所以整數(shù)x應(yīng)滿足22<x≤25.
所以,能夠完成工程任務(wù),符合條件的所有工程方案有如下三個(gè):
①綠化區(qū)長(zhǎng)邊為23m,短邊為13m;
②綠化區(qū)長(zhǎng)邊為24m,短邊為14m;
③綠化區(qū)長(zhǎng)邊為25m,短邊為15m.
點(diǎn)評(píng):本題考查點(diǎn)實(shí)際問(wèn)題中一次函數(shù)、二次函數(shù)的求法,二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2007•濟(jì)寧)某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為x m,短邊為y m,工程總造價(jià)為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數(shù)關(guān)系式;
(3)寫出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年陜西省中考模擬數(shù)學(xué)試卷(4)(金臺(tái)中學(xué) 楊宏舉)(解析版) 題型:解答題

(2007•濟(jì)寧)某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為x m,短邊為y m,工程總造價(jià)為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數(shù)關(guān)系式;
(3)寫出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年黑龍江省綏化市中考數(shù)學(xué)預(yù)測(cè)試卷(3)(解析版) 題型:解答題

(2007•濟(jì)寧)某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為x m,短邊為y m,工程總造價(jià)為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數(shù)關(guān)系式;
(3)寫出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年山東省濟(jì)寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•濟(jì)寧)某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為x m,短邊為y m,工程總造價(jià)為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數(shù)關(guān)系式;
(3)寫出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案