【題目】如圖,在△ABC中,點D、E、F分別是邊AB、AC、BC的中點,要判定四邊形DBFE是菱形,下列所添加條件不正確的是( )
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
【答案】A
【解析】
當(dāng)AB=BC時,四邊形DBFE是菱形.根據(jù)三角形中位線定理證明即可;當(dāng)BE平分∠ABC時,可證BD=DE,可得四邊形DBFE是菱形,當(dāng)EF=FC,可證EF=BF,可得四邊形DBFE是菱形,由此即可判斷;
當(dāng)AB=BC時,四邊形DBFE是菱形;
理由:∵點D、E、F分別是邊AB、AC、BC的中點,
∴DE∥BC,EF∥AB,
∴四邊形DBFE是平行四邊形,
∵DE=BC,EF=AB,
∴DE=EF,
∴四邊形DBFE是菱形.
故B正確,不符合題意,
當(dāng)BE平分∠ABC時,可證BD=DE,可得四邊形DBFE是菱形,
當(dāng)EF=FC,可證EF=BF,可得四邊形DBFE是菱形,
故C、D不符合題意,
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點M(n,-n)在第二象限,過點M的直線y=kx+b(k>1)分別交x軸、y軸于點A、B,過點M作MN⊥x軸于點N,點P為線段AN上任意一點,則點P的橫坐標(biāo)可以是( )
A. (1+)nB. (1+)nC. (1+k)nD. (1-k)n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx-3與x軸、y軸分別相交于B、C兩點,且OC=2OB
(1)求B點的坐標(biāo)和k的值.
(2)若點A(x,y)是直線y=kx-3上在第一象限內(nèi)的一個動點,當(dāng)A 在運動的過程中,試寫出△AOB的面積S與x的函數(shù)關(guān)系式,(不要求寫出自變量的取值范圍).
(3)探究:在(2)的條件下
①當(dāng)A運動到什么位置時,△ABO的面積為,并說明理由.
②在①成立的情況下,x軸上是否存在一點P,使△AOP是等腰三角形?若存在,請直接寫出滿足條件的所有P點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是矩形,連接AC,點E是邊CB延長線上一點,CA=CE,連接AE,F(xiàn)是線段AE的中點,
(1)如圖1,當(dāng)AD=DC時,連接CF交AB于M,求證:BM=BE;
(2)如圖2,連接BD交AC于O,連接DF分別交AB、AC于G、H,連接GC,若∠FDB=30°,S四邊形GBOH=,求線段GC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①倒數(shù)等于本身的數(shù)是±1;②互為相反數(shù)的兩個非零數(shù)的商為﹣1;③如果兩個數(shù)的絕對值相等,那么這兩個數(shù)相等;④有理數(shù)可以分為正有理數(shù)和負有理數(shù);⑤單項式﹣的系數(shù)是﹣,次數(shù)是6;⑥多項式3πa3+4a2﹣8是三次三項式,其中正確的個數(shù)是( 。
A. 2 個B. 3 個C. 4 個D. 5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y的正半軸交于點C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點為E.
(1)拋物線的對稱軸與x軸的交點E坐標(biāo)為_____,點A的坐標(biāo)為_____;
(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點,過點Q作y軸的平行線,與直線BC交于點M,與拋物線交于點N,連結(jié)CN,將△CMN沿CN翻折,M的對應(yīng)點為M′.在圖②中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com