5、如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點坐標(biāo)分別為A(1,1),B(2,-1),C(-2,-1),D(-1,1).y軸上一點P(0,2)繞點A旋轉(zhuǎn)180°得點P1,點P1繞點B旋轉(zhuǎn)180°得點P2,點P2繞點C旋轉(zhuǎn)180°得點P3,點P3繞點D旋轉(zhuǎn)180°得點P4,…,重復(fù)操作依次得到點P1,P2,…,則點P2010的坐標(biāo)是
(2010,-2)
分析:由P、A兩點坐標(biāo)可知,點P繞點A旋轉(zhuǎn)180°得點P1,即為直線PA與x軸的交點,依此類推,點P2為直線P1B與y軸的交點,由此發(fā)現(xiàn)一般規(guī)律.
解答:解:由已知可以得到,點P1,P2的坐標(biāo)分別為(2,0),(2,-2).
記P2(a2,b2),其中a2=2,b2=-2.
根據(jù)對稱關(guān)系,依次可以求得:P3(-4-a2,-2-b2),P4(2+a2,4+b2),P5(-a2,-2-b2),P6(4+a2,b2).
令P6(a6,b2),同樣可以求得,點P10的坐標(biāo)為(4+a6,b2),即P10(4×2+a2,b2),
由于2010=4×502+2,
所以點P2010的坐標(biāo)為(2010,-2).
故答案為:(2010,-2).
點評:本題考查了旋轉(zhuǎn)變換的規(guī)律.關(guān)鍵是根據(jù)等腰梯形,點的坐標(biāo)的特殊性,尋找一般規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案