【題目】如圖1點(diǎn)O為直線AB上一點(diǎn)過點(diǎn)O作射線OC,使BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O一邊OM在射線OB,另一邊ON在直線AB的下方

1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OMBOC的內(nèi)部,且恰好平分BOC此時(shí)直線ON是否平分AOC?請(qǐng)說明理由

2)將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿順時(shí)針方向旋轉(zhuǎn)一周在旋轉(zhuǎn)的過程中,t秒時(shí),直線ON恰好平分銳角AOC, t的值為 秒(直接寫出結(jié)果)

3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ONAOC的內(nèi)部,試探索在旋轉(zhuǎn)過程中,AOMNOC的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)求出差的變化范圍

【答案】(1)直線ON平分∠AOC;(2)12或30秒;(3)差為定值30°.

【解析】試題分析:1)直線ON平分∠AOC設(shè)ON的反向延長線為OD,已知OM平分∠BOC根據(jù)角平分線的定義可得∠MOC=∠MOB,又由OM⊥ON,根據(jù)垂直的定義可得∠MOD=∠MON=90°,所以∠COD=∠BON,再根據(jù)對(duì)頂角相等可得∠AOD=∠BON,即可∴∠COD=∠AOD結(jié)論得證;1)已知∠BOC=120°,根據(jù)平角的定義可得∠AOC=60°旋轉(zhuǎn)至直線ON恰好平分銳角AOC,可得旋轉(zhuǎn)120°300°時(shí)ON平分∠AOC由此可得10t=120°或300°,所以n=1230;(3差為定值30°,因?yàn)椤?/span>MON=90°∠AOC=60°,所以∠AOM=90°-∠AON,∠NOC=60°-∠AON,再根據(jù)角的的和差計(jì)算即可.

試題解析:

1)直線ON平分∠AOC.理由:

設(shè)ON的反向延長線為OD

∵OM平分∠BOC,

∴∠MOC=∠MOB

∵OM⊥ON,

∴∠MOD=∠MON=90°

∴∠COD=∠BON,

∵∠AOD=∠BON(對(duì)頂角相等),

∴∠COD=∠AOD,

∴OD平分∠AOC,即直線ON平分∠AOC

21230

3)差為定值30°

∵∠MON=90°,∠AOC=60°,

∴∠AOM=90°-∠AON∠NOC=60°-∠AON,

∴∠AOM-∠NOC=90°-∠AON-60°-∠AON=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)已知x= +1,y= ﹣1,求下列各式的值. ①x2+2xy+y2
②x2﹣y2
(2)先化簡,再求值: ÷( ﹣a),其中a= ﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,點(diǎn)D為AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC方向以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位的速度先沿CB方向運(yùn)動(dòng)到點(diǎn)B,再沿BA方向向終點(diǎn)A運(yùn)動(dòng),以DP,DQ為鄰邊構(gòu)造PEQD,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t=2時(shí),求PD的長;

(2)如圖2,當(dāng)點(diǎn)Q運(yùn)動(dòng)至點(diǎn)B時(shí),連結(jié)DE,求證:DE∥AP.

(3)如圖3,連結(jié)CD.

①當(dāng)點(diǎn)E恰好落在△ACD的邊上時(shí),求所有滿足要求的t值;

②記運(yùn)動(dòng)過程中PEQD的面積為S,PEQD與△ACD的重疊部分面積為S1,當(dāng)時(shí),請(qǐng)直接寫出t的取值范圍是 ______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn)OD平分AOC,DOE=90°

1)若AOC=50°,求出BOD的度數(shù)

2)試判斷OE是否平分BOC,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校生物興趣小組把一塊沿河的三角形廢地(如圖)開辟為生物園(設(shè)AB段河岸為直線),已知∠ACB=90°,CAB=55°,BC=80米,學(xué)校決定在點(diǎn)C處建一個(gè)蓄水池,利用管道從河中取水,已知每鋪設(shè)1米管道費(fèi)用為50元,求鋪設(shè)管道的最低費(fèi)用(精確到1元).(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和是外角和的3倍,則它是_________ 邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】斜邊和一條_________對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可以簡寫成“________________”或“HL”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A校和B校分別庫存有電腦12臺(tái)和6臺(tái),現(xiàn)決定支援給C校10臺(tái)和D校8臺(tái).已知從A校調(diào)運(yùn)一臺(tái)電腦到C校和D校的運(yùn)費(fèi)分別為40元和10元;從B校調(diào)運(yùn)一臺(tái)電腦到C校和D校的運(yùn)費(fèi)分別為30元和20元.
(1)設(shè)A校運(yùn)往C校的電腦為x臺(tái),請(qǐng)仿照下圖,求總運(yùn)費(fèi)W(元)關(guān)于x的函數(shù)關(guān)系式;
(2)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A、B、C在同一條數(shù)軸上,其中點(diǎn)A、B表示的數(shù)分別為﹣3、1,若BC=2,則AC等于( 。
A.3
B.2
C.3或5
D.2或6

查看答案和解析>>

同步練習(xí)冊(cè)答案