【題目】某藥品包裝盒上標(biāo)注著“貯藏溫度:1℃土2℃”,以下是幾個(gè)保存柜的溫度,適合貯藏藥品的溫度是( )
A. -4℃ B. 0℃ C. 4℃ D. 5℃
【答案】B
【解析】
先根據(jù)有理數(shù)的加減法計(jì)算出貯藏溫度的最高溫度與最低溫度,然后對(duì)照幾個(gè)保存柜的溫度即可得出答案.
1+2=3,
1-2=-1,
即這種藥品的貯藏溫度最低是-1℃,最高是3℃,
觀察只有B選項(xiàng)的溫度適合,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿(mǎn)足∠PAB=∠PBC,則線(xiàn)段CP長(zhǎng)的最小值為( ).
A. 4 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若Rt△ABC的各邊都擴(kuò)大4倍,得到Rt△A′B′C′,則銳角∠A、∠A′的正弦值的關(guān)系為( )
A. sinA′=sinA B. 4sinA′=sinA C. sinA′=4sinA D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,已知A(6,0),B(8,6),將線(xiàn)段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.
(1)寫(xiě)出點(diǎn)C的坐標(biāo);
(2)當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線(xiàn)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)在(3,0)和(4,0)之間.則下列結(jié)論:①;②;③;④一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知關(guān)于x的二次函數(shù)y=x2+mx的圖象經(jīng)過(guò)原點(diǎn)O,并且與x軸交于點(diǎn)A,對(duì)稱(chēng)軸為直線(xiàn)x=1.
(1)常數(shù)m= ,點(diǎn)A的坐標(biāo)為 ;
(2)若關(guān)于x的一元二次方程x2+mx=n(n為常數(shù))有兩個(gè)不相等的實(shí)數(shù)根,求n的取值范圍;
(3)若關(guān)于x的一元二次方程x2+mx-k=0(k為常數(shù))在-2<x<3的范圍內(nèi)有解,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com