如圖,等邊△ABC內接于⊙O,P是上任一點(點P不與點A、B重合),連AP、BP,過點C作CM∥BP交PA的延長線于點M.
(1)填空:∠APC=______度,∠BPC=______度;
(2)求證:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面積.

【答案】分析:(1)利用同弧所對的圓周角相等即可求得題目中的未知角;
(2)利用上題中得到的相等的角和等邊三角形中相等的線段證得兩三角形全等即可;
(3)利用上題證得的兩三角形全等判定△PCM為等邊三角形,進而求得PH的長,利用梯形的面積公式計算梯形的面積即可.
解答:(1)解:∠APC=60°,∠BPC=60°;

(2)證明:∵CM∥BP,
∴∠BPM+∠M=180°,
∠PCM=∠BPC,
∵∠BPC=∠BAC=60°,
∴∠PCM=∠BPC=60°,
∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,
∴∠M=∠BPC=60°,
又∵A、P、B、C四點共圓,
∴∠PAC+∠PBC=180°,
∵∠MAC+∠PAC=180°
∴∠MAC=∠PBC
∵AC=BC,
∴△ACM≌△BCP;

(3)解:作PH⊥CM于H,
∵△ACM≌△BCP,
∴CM=CP  AM=BP,
又∠M=60°,
∴△PCM為等邊三角形,
∴CM=CP=PM=PA+AM=PA+PB=1+2=3,

在Rt△PMH中,∠MPH=30°,
∴PH=
∴S梯形PBCM=(PB+CM)×PH==
點評:本題考查了圓周角定理、等邊三角形的判定、全等三角形的性質及梯形的面積計算方法,是一道比較復雜的幾何綜合題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,等邊△ABC內接于⊙O,點P是劣弧
BC
上的一點(端點除外),延長BP至D,使BD=AP,連接CD.
(1)若AP過圓心O,如圖①,請你判斷△PDC是什么三角形?并說精英家教網明理由;
(2)若AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,等邊△ABC內接于⊙O,動點P在劣弧AB上,且不與A、B重合,則∠BPC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,等邊△ABC內接于⊙O,以O為旋轉中心,能使旋轉后的圖形與原圖形重合.下列符合條件的旋轉角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島)如圖,等邊△ABC內接于⊙O,則∠AOB等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊△ABC內接于⊙O,BD切⊙O于B,AD⊥BD于D,AD交⊙O于E,⊙O的半徑為1,則AE的長為(  )

查看答案和解析>>

同步練習冊答案