如圖,四邊形ABCD中,∠A+∠D=210°,∠ABC與∠BCD的平分線交于P,求∠P的度數(shù).
考點(diǎn):多邊形內(nèi)角與外角,三角形內(nèi)角和定理
專題:
分析:先求出∠ABC+∠BCD的度數(shù),然后根據(jù)角平分線的性質(zhì)以及三角形的內(nèi)角和定理求解∠P的度數(shù).
解答:解:∵四邊形ABCD中,∠ABC+∠BCD=360°-(∠A+∠D)=150°,
∵PB和PC分別為∠ABC、∠BCD的平分線,
∴∠PBC+∠PCB=
1
2
(∠ABC+∠BCD)=75°,
則∠P=180°-(∠PBC+∠PCB)=105°.
點(diǎn)評:本題考查了多邊形的內(nèi)角和外角以及三角形的內(nèi)角和定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程kx2-(2k+1)x+k=0的兩實(shí)數(shù)根為x1、x2,若
x1
x2
+
x2
x1
=
17
4
,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:x2-3x=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(1+
1
a2-1
÷
a
a-1
,選一個(gè)使原代數(shù)式有意義的數(shù)代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

點(diǎn)A,B的位置如圖,在網(wǎng)格上確定點(diǎn)C,使AB=AC,∠BAC=90°.
(1)在網(wǎng)格內(nèi)畫出△ABC;
(2)直接寫出△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩果園分別產(chǎn)有蘋果10噸和40噸,現(xiàn)全部運(yùn)送到A、B兩地銷售,根據(jù)市場調(diào)研,A、B兩地分別需要蘋果15噸和35噸;已知從甲、乙地到A、B地的運(yùn)價(jià)如右表,由以上信息,解決下列問題:
到A地運(yùn)價(jià) 到B地運(yùn)價(jià)
甲果園 150元∕噸 120元∕噸
乙果園 100元∕噸 90元∕噸
(1)若從乙果園運(yùn)到A地的蘋果為x噸,則從甲果園運(yùn)到B地的蘋果為
 
噸;從甲果園將蘋果運(yùn)往A地的運(yùn)輸費(fèi)用為
 
元(用含x的代數(shù)式表示);
(2)若運(yùn)往A地的運(yùn)輸費(fèi)用比運(yùn)往B地的運(yùn)輸費(fèi)用少1150元,用你所學(xué)的知識來說明是怎樣安排運(yùn)輸方案的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)點(diǎn)所在位置填表(圖)
點(diǎn)的位置橫坐標(biāo)符號縱坐標(biāo)符號
第一象限
 
 
第二象限
 
 
第三象限
 
 
第四象限
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠AOB=30°,則∠COD=
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知圓錐的母線長為6cm,側(cè)面積為12πcm2,那么該圓錐的底面圓半徑是
 
cm.

查看答案和解析>>

同步練習(xí)冊答案