【題目】如圖,AB是⊙O的切線,A為切點,AC是⊙O的弦,過O作OH⊥AC于點H.若OH=3,AB=8,BO=10.求:
(1)⊙O的半徑;
(2)弦AC的長(結(jié)果保留根號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A在y軸上,且點A坐標(biāo)為(0,4),BC在x軸正半軸上,點C在B點右側(cè),反比例函數(shù)(x>0)的圖象分別交邊AD,CD于E,F,連結(jié)BF,已知,BC=k,AE=CF,且S四邊形ABFD=20,則k= _________.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名徒步愛好者來衡陽旅行,他從賓館C出發(fā),沿北偏東30°的方向行走2000米到達石鼓書院A處,參觀后又從A處沿正南方向行走一段距離,到達位于賓館南偏東45°方向的雁峰公園B處,如圖所示.
(1)求這名徒步愛好者從石鼓書院走到雁峰公園的途中與賓館之間的最短距離;
(2)若這名徒步愛好者以100米/分的速度從雁峰公園返回賓館,那么他在15分鐘內(nèi)能否到達賓館?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2-2(m+1)x+m2=0.
(1)當(dāng)m取何值時,方程有兩個實數(shù)根?
(2)為m選取一個合適的整數(shù),使方程有兩個不相等的實數(shù)根,并求這兩個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務(wù)區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:
(1)求直線所對應(yīng)的函數(shù)關(guān)系式;
(2)已知小穎一家出服務(wù)區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當(dāng)天幾點到達姥姥家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,
(1)求∠B 的度數(shù)和 AB 的長.
(2)求 tan∠CDB 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com