【題目】如圖,在平面直角坐標系xOy中,點 在直線 上,過點 作 ∥y軸,交直線 于點 ,以 為直角頂點, 為直角邊,在 的右側(cè)作等腰直角三角形 ;再過點 作 ∥y軸,分別交直線 和 于 , 兩點,以 為直角頂點, 為直角邊,在 的右側(cè)作等腰直角三角形 ,…,按此規(guī)律進行下去,點 的橫坐標為 , 點 的橫坐標為 , 點 的橫坐標為 . (用含n的式子表示,n為正整數(shù))
【答案】3;;
【解析】解:∵點 在直線 上,過點 作 ∥y軸,交直線 于點 ,
∴B1(2,1),
∴A1C1= A1B1=1,
∴C1(3,2).
∵A2B2∥y ,
∴A2(3,3), ,
∴A2C2= A2B2= ,
,即 .
∵A3B3∥y ,
, ,
∴A3C3= A3B3= ,
,即 .
∴C1的橫坐標為 ;
C2的橫坐標為 ;
C3的橫坐標為 ;
……
∴Cn的橫坐標為 .
【考點精析】掌握數(shù)與式的規(guī)律和等腰直角三角形是解答本題的根本,需要知道先從圖形上尋找規(guī)律,然后驗證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律;等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù)的圖象于點B,點C是x軸上一點,且AO=AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是( )
A.36(1﹣x)2=36﹣25
B.36(1﹣2x)=25
C.36(1﹣x)2=25
D.36(1﹣x2)=25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市按以下規(guī)定收取每月的水費:用水不超過10立方米,按每立方米2.1元收費;如果超過10立方米,超過部分按每立方米3元收費,已知某用戶l2月水費平均每立方米2.5元.
按要求回答下列問題:
(1)這個用戶12月用水量10立方米(填“超過”或“不超過”).
(2)在(1)的前提下,求12月這個用戶的用水量是多少立方米?
(3)該用戶12月份需交水費元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)招商引資網(wǎng)消息,為加快新區(qū)經(jīng)濟發(fā)展,新區(qū)政府?dāng)M新區(qū)現(xiàn)代高效農(nóng)業(yè)示范園區(qū),共計劃投入資金3.75億元,精確到千萬位可表示為( )
A.3.7×108
B.3.8×108
C.0.38×1010
D.37×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點在B點的左側(cè))與y軸交于點C.
(1)如圖1,連接AC、BC,若△ABC的面積為3時,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PC,若∠BCP=2∠ABC時,求點P的橫坐標;
(3)如圖3,在(2)的條件下,點F在AP上,過點P作PH⊥x軸于H點,點K在PH的延長線上,AK=KF,∠KAH=∠FKH,PF=﹣4a,連接KB并延長交拋物線于點Q,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC , AB=10,BC=6,AC=AD=8.
(1)求∠ACB的度數(shù);
(2)求CD邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖。
(1)畫圖-連線-寫依據(jù):
先分別完成以下畫圖(不要求尺規(guī)作圖),再與判斷四邊形DEMN形狀的相應(yīng)結(jié)論連線,并寫出判定依據(jù)(只將最后一步判定特殊平行四邊形的依據(jù)填在橫線上).
①如圖1,在矩形ABEN中,D為對角線的交點,過點N畫直線NP∥DE , 過點E畫直線EQ∥DN , NP與EQ的交點為點M , 得到四邊形DEMN;
②如圖2,在菱形ABFG中,順次連接四邊AB , BF , FG , GA的中點D , E , M , N , 得到四邊形DEMN.
(2)請從圖1、圖2的結(jié)論中選擇一個進行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)23﹣17﹣(﹣7)+(﹣16);
(2)-5+6÷(-2)×;
(3)-36×;
(4)﹣23+|5﹣8|+24÷(﹣3).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com