【題目】某氣球內(nèi)充滿了一定量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的壓強(qiáng)P(kPa)是氣體體積V(m3)的反比例函數(shù),其圖像如圖所示.
(1)求這一函數(shù)的表達(dá)式;
(2)當(dāng)氣體壓強(qiáng)為48kPa時(shí),求V的值?
(3)當(dāng)氣球內(nèi)的體積小于0.6m3時(shí),氣球?qū)⒈ǎ瑸榱税踩鹨,氣體的壓強(qiáng)不大于多少?
【答案】(1);(2);(3)壓強(qiáng)不大于160kPa.
【解析】
(1)設(shè)函數(shù)解析式為P=,把點(diǎn)(0.8,120)的坐標(biāo)代入函數(shù)解析式求出k值,即可求出函數(shù)關(guān)系式;
(2)將P=48代入(1)中的函數(shù)式中,可求氣球的體積V.
(3)依題意V=0.6,即=0.6,求解即可.
(1)設(shè)P與V的函數(shù)關(guān)系式為P=,
則 k=0.8×120,
解得k=96,
∴函數(shù)關(guān)系式為P=.
(2)將P=48代入P=中,
得=48,
解得V=2,
∴當(dāng)氣球內(nèi)的氣壓為48kPa時(shí),氣球的體積為2立方米.
(3)當(dāng)V=0.6m3時(shí),氣球?qū)⒈ǎ?/span>
∴V=0.6,即=0.6,
解得 P=160kpa
故為了安全起見,氣體的壓強(qiáng)不大于160kPa.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,若,則.
理由:如圖,過點(diǎn)作,
則.
因?yàn)?/span>,
所以,
所以,
所以.
交流:(1)若將點(diǎn)移至圖2所示的位置,,此時(shí)、、之間有什么關(guān)系?請說明理由.
探究:(2)在圖3中,,、又有何關(guān)系?
應(yīng)用:(3)在圖4中,若,又得到什么結(jié)論?請直接寫出該結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),且與軸的一個(gè)交點(diǎn)為.
(1)求拋物線的表達(dá)式;
(2)是拋物線與軸的另一個(gè)交點(diǎn),點(diǎn)的坐標(biāo)為,其中,△的面積為.
①求的值;
②將拋物線向上平移個(gè)單位,得到拋物線.若當(dāng)時(shí),拋物線與軸只有一個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,過點(diǎn)的直線,為邊上一動(dòng)點(diǎn)(不與,重合),過點(diǎn)作,交直線于點(diǎn),垂足為,連接,.
(1)求證:;
(2)當(dāng)移動(dòng)到的什么位置時(shí),四邊形是菱形?說明你的理由;
(3)若點(diǎn)移動(dòng)到中點(diǎn),則當(dāng)的大小滿足什么條件時(shí),四邊形是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y =ax+b的圖像與反比例函數(shù)y =的圖像交于A(4,﹣2)、B(﹣2,m)兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,m的值;
(2)請直接寫出不等式ax+b≥的解集;
(3)點(diǎn)P在反比例函數(shù)圖像上,且點(diǎn)P的橫坐標(biāo)為-4,在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?如果存在,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1、x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值.
(1)x12x2+x1x22; (2)(x1﹣x2)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小紅在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y
(1)計(jì)算由x、y確定的點(diǎn)(x,y)在函數(shù)y=﹣x+5的圖象上的概率.
(2)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝,這個(gè)游戲公平嗎?請說明理由;若不公平,請寫出公平的游戲規(guī)則.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com